2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) | 978-1-6654-4057-8/20/$31.00 ©2021 IEEE | DOI: 10.1109/VRW52623.2021.00183

2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)

RED: A Real-Time Datalogging Toolkit for Remote Experiments

Sam Adeniyi*

University of Minnesota

ABSTRACT

The ability to conduct experiments on virtual reality systems has
become increasingly compelling as the world continues to migrate
towards remote research, affecting the feasibility of conducting in-
person studies with human participants. The Remote Experiment
Datalogger (RED) Toolkit is an open-source library designed to
simplify the administration of remote experiments requiring con-
tinuous real-time data collection. Our design consists of a REST
server, implemented using the Flask framework, and a client API for
transparent integration with multiple game engines. We foresee the
RED Toolkit serving as a building block for the handling of future
remote experiments across a multitude of circumstances.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—HCI design and evaluation methods—User studies;
Human-centered computing—Human computer interaction (HCI)—
Interaction paradigms— Virtual reality;

1 INTRODUCTION

Conducting remote experiments has been an increasingly popular ap-
proach over the past decade, with some researchers applying crowd
sourcing systems such as online survey websites [4]. Although
this allows for large numbers of responses, the accuracy and de-
pendability of this information is often in question. Unsurprisingly,
researchers in the virtual reality (VR) community have rarely been
able to take advantage of these crowdsourcing solutions and have
largely relied on in-lab testing to conduct experiments. This has
been historically due to the lack of access to head-mounted display
(HMD) devices for remote participants. However, low-cost and
standalone HMDs like the Oculus Quest are becoming much more
prevalent in household settings, making performing easily deploy-
able or remote VR experiments more feasible. Despite this, one
common limitation that these devices share is the lack of ability
to easily access files on the system. This in turn makes collecting
experiment data from the devices unnecessarily difficult without a
custom ad hoc solution.

Our research lab, as with most others around the world, quickly
realized that due to the unusual circumstances caused by the 2020
Coronavirus pandemic, conducting remote VR experiments will be
increasingly necessary in order to follow government guidelines
and regulations. There are many factors to running remote VR
experiments, one of the most important being the collection and
storage of the experiment data. To this end, we have designed
and released the Remote Experiment Datalogging (RED) Toolkit.
RED comprises a series of components for researchers to administer
remote experiments and collect data from remote or standalone VR
devices in a seamless manner. The toolkit can be split into two
main parts: a REST server and multiple client implementations. The
REST server is composed of a collection of endpoints that facilitate
administrative actions such as experiment creation and management,
as well as participant actions such as registration and datalogging.
The client implementations provide useful interfaces for interacting

*e-mail: {adeni026, suma, thoma891} @umn.edu

Evan Suma Rosenberg
University of Minnesota

Jerald Thomas
University of Minnesota

RED Example Usage Sequence Diagram

RED Server Participant N

create_experiment() o !
»

string:experimentKey

|

|

|

|

_________________ |
|
A

register_participant()

string:participant_id

loop J

add_data(participant_id, data)

U-f.

T
1

_, finish_participant(participant_id)

J

get_data(experiment_key)

json:data

-
|
|
|
|
|
|
1

Figure 1: A UML Sequence Diagram for basic usage. Note that this
diagram shows the bare minimum use case and does not reflect all of
the functionality that RED provides.

with the RED server via these exposed endpoints. We have currently
written several client implementations, which we will discuss in
Section 2, but our hope is that by open-sourcing this project, more
client implementations will be contributed by the community.

2 ARCHITECTURE AND OVERVIEW

RED uses a REST Application Programming Interfaces (API).
REST, which stands for REpresentational State Transfer, was first
presented by Roy Fielding in his 2000 dissertation and is described
as an “architectural style for distributed hypermedia systems” [3].
This architecture is based on HTTP(S) calls (GET, POST, PUT, etc.)
and is the backbone for most of the modern World Wide Web. REST-
ful systems are stateless, meaning that the client does not need to
know the state of the server and vice versa. Changes made to the
client side will not affect the server operation, thus improving the
flexibility of the interface and simplifying the server components.
As previously stated, the RED toolkit is composed of the server as
well as a collection of client implementations.

The basic workflow for conducting an experiment using the RED
toolkit is shown in Figure 1. Using one of the clients described
below, the experiment administrator tells the RED server to create a
new experiment. This experiment object is stored in a database on
the server and contains key information regarding the experiment.
Then using a provided client (though not necessarily the same one

978-1-6654-4057-8/21/$31.00 ©2021 IEEE 601
DOI 10.1109/VRW52623.2021.00183

Authorized licensed use limited to: University of Minnesota. Downloaded on September 16,2021 at 19:45:49 UTC from IEEE Xplore. Restrictions apply.



as the administrator), participants can subsequently register for the
experiment to get a unique participant ID, repeatedly add data until
the experiment is finished, and then let the server know that they
are finished. After the participants have finished, the experiment
administrator then collects the data from the server.

RED Server. The RED server employs the Flask framework, a
commonly used micro-web framework for creating APIs in Python
that does not require any additional dependencies [2]. This handles
all the back-end functionality, mainly allowing for querying through
multiple endpoints. Flask’s small footprint and ease of use makes
deployment of the RED server relatively simple and painless.

The RED server endpoints can be divided into two main cate-
gories: admin endpoints and participant endpoints. Admin endpoints
are designed to be called only by machines controlled directly by
the experimenter or their colleagues. The main distinction between
admin and participant endpoints is that calls to the admin endpoints
must provide an experiment key. Currently, the admin endpoints
allow an experimenter to create and delete experiments, view the
registered participants, and download experiment data.

Participant endpoints are designed to be called by machines con-
trolled by the participants. Our current use case assumes the partici-
pant machines are self-contained VR headsets such as the Oculus
Quest, but any machine with a connection to the internet could serve
as a participant machine. Participant endpoints allow experiment
programs running on the participant machine to register a partici-
pant to an experiment and add experiment data from the participant
machine to the server’s database.

Researchers have an ethical responsibility to keep participant data,
even anonymous data, private and secure. The traditional model
for a system like this would be for experimenters to create a user
account and for the system to provision permissions for them to
access data from the experiments that they create. It would also need
to support the sharing of permissions so that the accounts belonging
to research team members could also access the data. This model,
while common, is not without potential security flaws such as users
employing weak passwords (or passwords that they use elsewhere)
and privilege escalation. User provisioning also requires an amount
of system administration overhead that we were seeking to avoid. To
get around these issues we decided to implement a simpler resource
token based model. In our system, this translates to the server
requiring a token in order for users to access experiment data. As
RED does not require a complex user model, the system does not
lose any functionality by not implementing user accounts.

Once a user creates an experiment the server generates a unique
token, referred to as the experiment key, for accessing that experi-
ment’s data. The experiment key can be shared by the experimenter
to others who should also have access to the experiment data. The
experiment key is a random 128 bit version 4 Universal Unique Iden-
tifier (UUID4), which guarantees a unique identifier and is virtually
impossible to guess, unlike a human generated password. Using
a version 4 UUID allows us to avoid conflicting identifiers in our
system, and unlike UUID version 1, it does not use the computer’s
MAC address in generation which would allow for more potential
security vulnerabilities. It is important to note that while we have
taken steps to secure the RED server and the data that it holds, we are
not security experts. Again, our intent is that by open-sourcing this
project the community can further strengthen the security measures
that have already been outlined.

RED Clients. Currently, we have created three client implemen-
tations for the RED toolkit: a Unity client, a JavaScript client, and
a Python client. The Unity client is designed to allow interactions
with the RED server to either occur in the editor (for admin actions),
or during playtime (for participant actions). This allows the man-
agement of experiment data to be completely contained within the
Unity environment. The JavaScript client allows for interacting with
the RED server from a browser and can be embedded in web-based

602

game engines such as Babylon.js or can simply be used within a
HTML page (for example, to create a survey). Using the JavaScript
client, we have also implemented a web portal in the Flask applica-
tion for researchers to create and manage experiments, as well as
download experiment data, directly from their browser. The Python
client includes an API module as well as a command line interface
tool for managing and testing RED experiments. These clients are
simple to integrate into experiments with minimal effort.

Public Release. The RED toolkit has been released using the
the MIT open-source license in the hopes that the community will
find it useful and potentially contribute to the project. The source
code and documentation can be found on GitHub [1].

3 CONCLUSION AND FUTURE WORK

Although the RED toolkit has been deployed on a university-
controlled server, extensive testing must still be conducted under a
variety of research contexts. Currently, our lab is developing two
remote experiments using Unity, and two WebXR experiments using
Babylon.js. We also would like to develop and release an additional
client implementation for the Unreal engine. We have focused on
implementing VR experiments with RED due to the nature of our
research, but we would like to point out that its data collection capa-
bilities are not necessarily restricted to VR. The toolkit, therefore,
could be deployed in a much broader variety of research applications.

Aside from testing, there are a few additional features that we
would like to see implemented. First we would like to add a feature
to restrict who can create experiments on a particular RED server
instance. We plan to implement another token based system in which
a unique and pre-shared token would be required to create an experi-
ment. These tokens could be distributed by the system administrator
to those that should have experiment creation capabilities. By creat-
ing this set of pre-shared tokens, we can further monitor anyone that
is trying to access the RED server and reduce the affordances of any
malicious actors. Second, we would like to transition the server from
HTTP to HTTPS in order to establish an encrypted communication
channel that protects from network eavesdropping and adds another
layer of confidentiality.

We have presented the Remote Experiment Datalogging Toolkit,
a platform designed to simplify the handling and management of
data for experiments conducted on standalone or remote VR devices.
RED is simple to use and is ready to integrate with the most common
VR experience design platforms. It is also open-source, so it is
possible to create a client for a particular VR experience design
platform if it does not already exist. We believe that this system
can greatly simplify experiment design and management as our
community continues to conduct experiments remotely, but we also
expect it to be useful even for in-person experiments that rely on
standalone VR systems such as the Oculus Quest.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1901423.

REFERENCES

[11 Remote Experiment Datalogging Toolkit. https://github.umn.edu/
illusioneering/RED.

F. A. Aslam, H. N. Mohammed, J. M. Mohd, M. A. Gulamgaus, and
P. Lok. Efficient way of web development using python and flask.
International Journal of Advanced Research in Computer Science, 6(2),
2015.

R. T. Fielding and R. N. Taylor. Architectural styles and the design of
network-based software architectures, vol. 7. University of California,
Irvine Irvine, 2000.

B. Huber and K. Z. Gajos. Conducting online virtual environment
experiments with uncompensated, unsupervised samples. Plos one,
15(1):20227629, 2020.

(21

(31

(41

Authorized licensed use limited to: University of Minnesota. Downloaded on September 16,2021 at 19:45:49 UTC from IEEE Xplore. Restrictions apply.



		2021-05-04T11:10:45-0400
	Preflight Ticket Signature




