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Adaptive Redirection: A Context-Aware
Redirected Walking Meta-Strategy
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Abstract—Previous research has established redirected walking as a potential answer to exploring large virtual environments via
natural locomotion within a limited physical space. However, much of the previous work has either focused on investigating human
perception of redirected walking illusions or developing novel redirection techniques. In this paper, we take a broader look at the
problem and formalize the concept of a complete redirected walking system. This work establishes the theoretical foundations for
combining multiple redirection strategies into a unified framework known as adaptive redirection. This meta-strategy adapts based on
the context, switching between a suite of strategies with a priori knowledge of their performance under the various circumstances.
This paper also introduces a novel static planning strategy that optimizes gain parameters for a predetermined virtual path, known as
the Combinatorially Optimized Pre-Planned Exploration Redirector (COPPER). We conducted a simulation-based experiment that
demonstrates how adaptation rules can be determined empirically using machine learning, which involves partitioning the spectrum of
contexts into regions according to the redirection strategy that performs best. Adaptive redirection provides a foundation for making
redirected walking work in practice and can be extended to improve performance in the future as new techniques are integrated into
the framework.

Index Terms—Virtual reality, redirected walking, locomotion, combinatorial optimization

1 INTRODUCTION

Many virtual reality applications require users to navigate within large-
scale virtual worlds. Allowing the users to walk naturally provides
benefits such as efficient navigation [45, 52], improved cognitive maps
of the environment [46], and an enhanced sense of presence [57]. How-
ever, since virtual environments may easily be larger than the available
physical space, providing these types of experiences becomes a diffi-
cult challenge. Redirected walking offers a potential solution to this
problem that alters the mapping between real and virtual movements,
thereby allowing the user to traverse a virtual path that does not fit
within the physical space [43]. Translation and curvature gains can
be used to manipulate the user’s path through the environment, and
rotation gains can be used to adjust their orientation during turns.

In the context of redirected walking, one of the key questions is
when and to what degree each gain should be applied to maximize
effectiveness. A variety of heuristics have been introduced to address
this matter, the most common of which is to adjust gains such that the
user is gradually steered towards the center of the physical space [42].
More sophisticated planning methods have also been proposed that
involve evaluating different gain choices based on how they map the
user’s predicted virtual path to a real world trajectory and then selecting
the gains with the highest utility [9, 34, 65]. The performance of these
approaches can be compared in terms of how effective they are at
keeping the user within the physical space. Although previous work
has noted performance improvements when using planning approaches
in specific circumstances, comprehensive selection criteria for different
redirected walking strategies remains an open question. Furthermore,
the notion of performance itself is still a topic of debate in the redirected

• Mahdi Azmandian was with the Institute for Creative Technologies,
University of Southern California.

• Rhys Yahata is with the Institute for Creative Technologies, University of
Southern California.

• Timofey Grechkin was with the Institute for Creative Technologies,
University of Southern California.

• Evan Suma Rosenberg is with the Department of Computer Science &
Engineering, University of Minnesota. E-mail: suma@umn.edu

walking literature, with various metrics used in different contexts to
evaluate and compare redirection techniques.

In this paper, we formalize the concept of a complete redirected
walking system and present a taxonomy that organizes its components
in a hierarchical structure. Starting with the building blocks, we iden-
tify redirection techniques, how they are used in heuristics, together
forming redirection strategies, and finally expand to create a redirection
system. With these theoretical foundations established, we introduce
adaptive redirection, a novel redirected walking system designed as
a blueprint for creating a hybrid of redirection strategies. Adaptive
redirection is a context-aware meta-strategy—it adapts to the context
in which redirection is applied and sits above a collection of strategies,
determining which should be used depending on the context. The cen-
tral tenet of adaptive redirection is that no single redirection strategy
is generally superior in all situations. Instead, the system should be
able to dynamically shift from one strategy to another, potentially using
multiple approaches throughout the course of a single experience.

To fully flesh out the design of the adaptive meta-strategy, we first
introduce a categorization for redirection strategies, grouping them into
General, Dynamic Planning, and Static Planning. This categorization
reflects the fact that not all redirection strategies are always applicable,
and this distinction is driven by requirements needed to successfully
apply each strategy. By design, adaptive redirection takes a candidate
from each category of strategies, and uses adaptation rules to determine
which strategy should be activated at each point in time. However,
given that previous static planning methods are custom-tailored and not
automated, they are not suitable for integration in an adaptive system.
To address this gap, we introduce the Combinatorially Optimized Pre-
Planned Exploration Redirector (COPPER) as the first automated static
planning redirection strategy.

To implement a successful meta-strategy, the specific factors that
influence the effectiveness of individual redirection strategies (i.e. the
context) must be identified, and the variance in their performance under
different conditions must be investigated. To achieve this, we formalize
the notion of prediction graph and describe the range of possible con-
texts affecting redirection. As the next step, we study the performance
of each redirection strategy in a simulation-based experiment and use
the results to develop adaptation rules that determine which strategy
should be activated at a given point in time.

The contributions of this paper include: (1) establishing the theo-
retical foundations for a redirected walking system; (2) introducing
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Fig. 1. Schematic for the meta-strategy in adaptive redirection. The system (represented by the black trapezoid) adapts to the context, dynamically
selecting between multiple redirection strategies and activating the best choice among the options available.

the adaptive redirected walking system including a categorization of
existing redirection strategies along with a definition of context; (3)
presenting COPPER, a novel redirection strategy that achieves high
performance for pre-determined virtual paths; (4) demonstrating how
adaptation rules for the adaptive framework can be derived empirically
using machine learning; and (5) analyzing the comparative performance
of a representative strategy from each category, offering nuanced in-
sights on their performance factors. The infrastructure presented in this
work therefore encompasses many previous research efforts, identifies
how they fit in the greater picture, and lays out a roadmap for the future
development of redirected walking systems.

2 BACKGROUND AND RELATED WORK

Redirected walking was initially proposed by Razzaque et al. [42] as
a potential solution to physical space size limitations when exploring
large virtual environments. This locomotion interface is made possible
by perceptual illusions that exploit the fact that the human visual system
dominates over vestibular cues. In fully immersive VR systems, it is
possible to introduce subtle discrepancies between physical and visually
perceived movements to “steer” unsuspecting users away from the
boundaries of the physical space. In this section, we summarize the
prior research most relevant to this work. More extensive literature
reviews can be found in recent survey papers on redirected walking [37]
and virtual locomotion [1, 38].

2.1 Self-Motion Gains and Perceptual Thresholds
Redirected walking works by adding discrepancies between the user’s
physical and virtual paths. The methods by which these discrepancies
are introduced are called the self-motion gains. Traditionally, three
self-motion gains have been used: rotation gain, translation gain, and
curvature gain. Translation gains scale virtual translations relative to
the real world movement, resulting in faster or slower displacement in
the virtual world. Rotation gains apply scaling to rotations, effectively
increasing or decreasing the amount of virtual rotation relative to a
user’s real-world movement. Finally, curvature gain injects a virtual
rotation when the user is walking (i.e. primarily translating) in the real
environment, which alters the user’s trajectory in the virtual world. In
order to maintain the desired trajectory, the user will physically rotate in
the opposite direction, resulting in a curved real-world trajectory. The
original implementations of redirected walking only used rotation and
curvature gains [42, 43], and translation gains (which were separately
implemented in other locomotion techniques such as the Seven League
Boots by Interrante et al. [25]) were later incorporated. More recently,
other self-motion techniques have also been proposed. Bending gains
combine curvature and rotation gains to make better use of virtual
curved paths [26]. Strafing gains are another self-correcting gain in
which the user’s virtual view is shifted to their left or right as they
translate forward [63]. Similar to curvature gain, the user will shift
their body in the opposite direction to maintain their desired trajectory,

resulting in an angled real world path. Bending and strafing gains are
not yet commonly incorporated in redirected walking implementations.

To ensure that the user remains unaware of the manipulation, the
gains need to be within the limits of corresponding perceptual detection
thresholds. These thresholds are unique for each gain and have been
estimated through several empirical studies. The seminal study that
is most commonly referenced was performed by Steinicke et al. [49].
Other studies have looked at how changing translation speed affects
the thresholds, how combining gains affect the thresholds [18], how
field of view affects the thresholds [2, 12, 61], and the relationship
between thresholds and gender [61]. It is also widely accepted that these
detection thresholds vary considerably among individuals, and Hutton
et al. developed a method for quick individualized calibration of a user’s
detection thresholds for rotation gains [24]. There is currently a lack of
research regarding a user’s sensitivity to changing gain levels. Congdon
et al. is the first to formally explore this concept, and they determined
that gain smoothing is a necessity in RDW applications [14], but more
research is needed to obtain a better understanding. Schmitz et al.
proposed “threshold of limited immersion” (TLI) as an alternative to the
traditional gain detection threshold [47]. TLI measures when user’s lose
their sense of immersion due to gain levels, instead of merely noticing
them. The results suggest that RDW becomes more effective when TLI
is used instead of traditional detection thresholds. However, further
research noted that experiences that utilize TLI caused a measurable
increase in the user’s cybersickness, which usually subsided shortly
after exposure [20].

A variety of methods to augment redirected walking have been intro-
duced over the last decade. Sound has been investigated to enhance, or
even replace, traditional redirected walking techniques [16, 44, 48]. Re-
searchers have also studied techniques to increase redirection gains dur-
ing eye blinks or saccade movements [13, 28, 36, 53]. Other techniques
such as using haptic cues [31] or transcranial direct-current stimula-
tion [27] have also been proposed. Additionally, a distinct but related
technique for redirecting user vertically, known as redirected jump-
ing, has also recently emerged as a new research topic [19, 30, 33, 62].
However, our proposed adaptive redirection framework is focused on
redirected walking along the horizontal plane, and vertical movement
is beyond the scope of this paper.

2.2 Boundary Collision Recovery
Because the application of self-motion gains is limited by the detection
thresholds, there will inevitably be moments when the system cannot
keep the user’s path within the physical tracked space. When this
occurs, the system must intervene to keep the user from exiting the
boundaries of the physical space. One approach involves temporarily
exceeding the detection thresholds until the risk of exiting the tracked
space has passed [11, 39, 51]. This will likely cause the user to no-
tice the redirection and may even result in negative experiences such
as cybersickness, although the effects on the user’s experience are
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largely unstudied. More commonly, collisions with the boundary of the
physical space are prevented by using reorientation events [41]. This
approach is essentially a fail-safe mechanism that stops the user from
leaving the boundary, requiring them to perform a reorientation task
before continuing to walk. Resets are a type of reorientation event that
often involve instructing the user to perform an in-place virtual rotation
that is scaled with rotation gains [58]. For example, the face-center re-
set scales the rotation such that when the reset task is complete, the user
faces towards the center of the physical space. Reorientation events
usually pause the experience while the reorientation task is underway,
which can be disruptive for the user. However, it is possible to construct
the reorientation events in such a way that they are contextually relevant
to the larger experience, resulting in a much lower chance that the user’s
sense of presence will be broken [17, 40].

2.3 Steering Algorithms
A core component of the taxonomy proposed in this paper is a redirec-
tion strategy. The closest equivalent to this idea in the existing literature
is a steering algorithm. It is the job of the steering algorithm to control
the magnitude of the gains applied to the user’s movements. Ideally,
the steering algorithm will produce a virtual-physical path pair that is
more spatially efficient than walking without redirection.

The most widely used redirected walking algorithms in the literature
are Steer-to-Center (S2C) and Steer-to-Orbit (S2O), both proposed in
the original redirected walking paper [43]. Both of these techniques are
essentially greedy approaches that rely only on the current user’s physi-
cal location and direction of travel within physical space to determine
the best choice of gains at each calculation step. As the system can only
react to the user’s current state, these algorithms are generally referred
to as reactive algorithms. S2C uses rotation and curvature gains to steer
the user toward the center of the physical space, while S2O aims to steer
the user along an elliptical trajectory around the center. In recent years,
two new forms of reactive algorithms have been introduced, both of
which are focused on complex physical environments that may contain
non-convex boundaries or obstacles such as furniture. The first category
uses artificial potential fields to provide a better heuristic [11, 32, 55]
and the second uses machine learning techniques to provide optimized
solutions for a given physical environment [15, 29, 50].

Predictive algorithms have also been proposed that leverage infor-
mation of the user’s possible future path in the virtual environment,
such as FORCE [65] and MPCRed [34]. These approaches involve
investigating the outcome of the user’s future movements to select gains
according to some utility function. Possible actions are typically repre-
sented as a prediction graph that expresses the user’s trajectory options
in the near term. Constructing the graph often relies on a representation
of the virtual environment’s layout in the form of a bidirectional layout
graph. This annotation provides a high-level abstract description of
possible paths that a user can take. Edges of such a graph represent the
general expected direction of travel for possible paths in a particular
area of the virtual environment, while nodes correspond to decision
points where potential paths diverge. The prediction graph may need
to be created manually by the experience designer; alternatively, algo-
rithms have also been introduced to automate the creation of the layout
and prediction graphs [6, 64]. Recently, Williams et al. introduced a
new algorithm, ARC, which has properties of both reactive and pre-
dictive algorithms [59]. ARC seeks to align the virtual and physical
geometries instead of generating a prediction graph.

2.4 Performance Evaluation
The performance of a redirected walking system depends on a variety
of interacting factors including user behavior, physical space dimen-
sions, the structure of the virtual environment and the type of virtual
path, as well as the internal parameters such as perceptual thresholds
and the reorientation method. This complexity makes comparative
evaluation of these algorithms a non-trivial problem. Azmandian et
al. [5] introduced a systematic method of evaluation that controlled for
the most salient factors impacting performance and proposed using a
simulated user to enable experiments with large numbers of lengthy
trials, both of which cannot be feasibly accomplished via user studies.

A key characteristic of this system was accounting for the effect of the
physical space and boundary collisions on the simulated user, requiring
a reset action instead of permitting simulated users to exceed these
limits. Furthermore, the frequency of these interruptions were used as
the primary measure of performance instead of the previously proposed
method of computing the minimum physical space dimensions that
could fully contain a redirected user without ever reaching a boundary.

One of the fundamental questions that remains largely unanswered
is how different redirection strategies perform across the various condi-
tions that may be encountered in a virtual reality experience. Although
subsets of this problem have been investigated in isolation [5,22,32,55],
our conceptual framework considers the broad spectrum of approaches,
also factoring in the characteristics of prediction graphs. This work
therefore establishes the foundations for understanding how the perfor-
mance of redirection strategies will be influenced by external factors,
which approach works best for a given set of conditions, and how an
overall redirection walking system can be expected to perform.

3 DESIGN HIERARCHY OF A REDIRECTED WALKING SYSTEM

In this section, we provide the theoretical foundations for organizing
a redirected walking system into a hierarchical structure. At the very
top, we have a redirection system, which can make use of one or more
strategies. A strategy would then make use of one or more heuristics,
which in turn each make use of a set of techniques. We will now
introduce each of these concepts in order to formalize the abstract
structure of a redirected walking system.

3.1 Redirection Techniques
A redirection technique is a mechanism for manipulating the user’s
trajectory. Individual techniques are essentially the atomic building
blocks for redirected walking. The three most common techniques are
translation gains, rotation gains, and curvature gains, which have been
already defined in section 2.

3.2 Redirection Heuristics
A heuristic is any mechanism or algorithm that uses one or more redi-
rection techniques to fulfill a certain task or move towards an objective.
The two most common forms of heuristics within the literature are redi-
rection heuristics and reorientation heuristics. As their names suggest,
a redirection heuristic aims to keep users within the physical space,
while reorientation heuristics use techniques to reorient the user away
from the boundary. With this formulation, the steer-to-center “steering
algorithm” would be considered a redirection heuristic that uses rota-
tion and curvature gain techniques to meet the objective of steering the
user towards the center of the space. Similarly, the face-center reset is
a reorientation heuristic that uses the rotation gain technique to reorient
the user away from the boundary to face the center of the space.

3.3 Redirection Strategies
A strategy is a mechanism that uses one or more heuristics in order to
ensure users remain within the boundaries of the physical space. More
specifically, a redirection strategy is a function that takes in a set of
arguments about the current state, selects and applies redirection heuris-
tics, and returns a set of values for gains (rotations and translations) to
be applied immediately on the next computation frame (Figure 2).

3.3.1 Inputs
The input of a redirection strategy can be grouped into either spatial
input or user input. Spatial input comprises the information describing
the state of the user, physical space, and virtual environment at a
given moment. The user input, on the other hand, describes the set of
preferences that tailor the experience to best suit the user. Note that not
all these inputs are required for a redirection strategy to function.

Spatial Input

(a) physical space dimensions: exact dimensions of the physical
space (e.g., 5×5 meters for an HTC Vive tracking space).
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Fig. 2. The components of a redirection strategy. Inputs are grouped into
spatial and user inputs which are used to determine the output gains.

(b) virtual environment: 3D model of the virtual world along with
relevant data such as specific targets or experience restrictions.

(c) user real pose: the user’s position and rotation in the real world
coordinate system (and potentially additional information such as
eye-tracking data and feet position).

(d) real to virtual origin transform: the transformation matrix map-
ping the origin of the real world to the virtual world origin.

User Input

(a) detection thresholds: the extreme values for each type of gain
that could be applied [49]. Conceivably, this could include more
complicated input that would account for velocity-dependent
thresholds or other factors [18, 35]).

(b) reorientation task preferences: specific reorientation methods
preferred by the user (e.g., text/voice prompt, distractor, etc.).

3.3.2 Outputs
The outputs of a redirection strategy include:

(a) redirection gains: the translation, rotation, and curvature gain
values to inject in the next computation frame.

(b) reorientation signal: discrete event that triggers or disables a
reorientation task.

It is worth mentioning that the gains from the output influence the
real to virtual origin transform, which will again be fed back into the
function in the next computation frame.

3.3.3 Internal Components of a Redirection Strategy
The components of a redirection strategy may include:

(a) redirection heuristic: the main component that guides the
decision-making for applying gains.

(b) reorientation heuristic: the method for executing the reorienta-
tion task using gains.

(c) gain-smoothing mechanism: a component that ensures gain
values change gradually to prevent detection and user discomfort.

(d) user and system state history: a summary of relevant informa-
tion from the recent computation frames.

3.4 Redirected Walking System
A redirected walking system defines a complete locomotion interface
that enables natural walking in a virtual environment within a smaller
physical space by using one or more redirection strategies. In its
simplest form, a redirected walking system can be entirely composed
of a single redirection strategy, but in more advanced cases, multiple
redirection strategies can be integrated into a meta-strategy. A meta-
strategy resides above other redirection strategies and governs how they
can be integrated in order to determine the final output. The paradigm
presented in this work is an example of a redirected walking system
and, to the best of our knowledge, the first ever to combine multiple
redirection strategies using an adaptive meta-strategy. Measures based
on reset frequency, such as the average distance walked between resets,
are the primary metrics for evaluating the performance of a redirected
walking system.

4 THE ADAPTIVE REDIRECTION META-STRATEGY

The Adaptive Redirection Meta-Strategy is a function that determines
the most effective redirection strategy for a given physical space based
on the context, which we define using a prediction graph measured at
the user’s location. In this section we will explore the domain, range,
and mapping of inputs to outputs (i.e. adaptation rules) for this function.

4.1 A Taxonomy of Redirection Strategies

Not all redirection strategies can be applied in all circumstances, and
their applicability is subject to the availability and properties of the
prediction graph. We can therefore, categorize redirection strategies
according to the range of circumstances (i.e. subset of contexts) in
which they can be applied.

General strategies can be applied to any scenario and do not de-
pend on user predictability. Therefore, they neither rely on a prediction
graph nor are able to leverage one even if available. These strategies
utilize only current state information, sometimes employing only a
single heuristic that is akin to a greedy algorithm. For example, com-
mon steering algorithms such as steer-to-center and steer-to-orbit are
examples of both a redirection heuristic and a general strategy.

Dynamic planning strategies such as FORCE [65] and MPCRed
[34] rely on the availability of a prediction graph. They use the pre-
diction graph to dynamically plan a short-term redirection strategy.
This plan is periodically updated as the user explores the environment.
These strategies typically require some level of user predictability, but
do not strictly require a linear path through the virtual environment (i.e.,
they can support branching pathways).

Static planning strategies have a very strict dependency on user
predictability—they require a prediction graph that does not contain any
branches. This means the user’s virtual path is completely predictable.
This feature allows the strategy to plan the entire route in advance,
thus choosing the best set of gains. Any strategy that is designed or
tailored for a specific path can be considered a static planning strategy.
Razzaque’s zig-zag fire drill demonstration from the original redirected
walking paper is an example of this approach [43].

When designing adaptive redirection, we assume at least one can-
didate strategy is selected from each category. Ideally, the chosen
strategies would be determined based on one of more factors like per-
formance, efficiency, or ease of implementation. Adaptive redirection
determines a set of rules to switch between these strategies such that
the most effective one is selected at any given time. This does not mean
a single strategy is selected for each virtual reality experience. Instead,
within a single experience, the activated strategy will not necessary stay
constant and may change multiple times as the user moves throughout
the virtual environment. The adaptive framework is therefore flexi-
ble, and new redirection strategies can be readily integrated without
changing the high-level system architecture.

4.2 Prediction Graph Properties

The input for an adaptive redirection meta-strategy is a prediction graph.
This graph is used to first determine which strategies are applicable.
If multiple strategies can be used, it is further examined to determine
which of the contending strategies would perform best. Given the
proposed classification of strategies, three distinct scenarios can be
identified: 1) no prediction graph is available, in which case the general
redirection strategy will be selected by default, 2) the prediction graph
contains branches, in which case both general and dynamic planning
strategies are viable, and 3) the prediction graph has no branches, in
which case all three approaches are applicable. The hypothesis is that
the properties of the prediction graph are sufficient for determining the
most effective approach in scenarios 2 and 3. Therefore, it is essential
to express the prediction graph properties with variables that capture its
characteristics. In this work, we characterize prediction graphs by the
distribution of the segment length, turn angle, and branching factor.

A segment is a portion of the complete virtual path which starts at
one waypoint and ends at another. Consequently, the segment length is
the distance between the start and end waypoint. The segment length
distribution for a given prediction graph is a continuous probability
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Fig. 3. The pipeline for developing the adaptive redirected walking
system. Adaptation rules are constructed by training on data provided
by the evaluation framework (i.e. simulations) such that the appropriate
redirection strategy can be selected for the given context.

distribution for the segment lengths of that graph. When the user fin-
ishes traversing a path segment, they turn in place to face the next
waypoint. The amount of rotation is known as the turn angle. Simi-
lar to the segment length distribution, the turn angle distribution is a
continuous probability distribution for the turn angles of a given graph.
The branching factor for a given waypoint is defined as the number of
waypoints that it connects to. The distribution assigns a probability
value to each possible non-zero integer branching factor.

4.3 From Prediction Graph to Most Effective Strategy
The final component of the adaptive redirection meta-strategy is the
mapping from the inputted prediction graph to the most effective redi-
rection strategy. This problem can be formulated as a classification
of the prediction graph space: labeling regions with the strategy that
best performs within it. In order to accomplish this, we sample the
domain, label each sample with the strategy that performs the best, and
use machine learning to train a classifier that partitions the prediction
graph space based on the samples’ labels. Additionally, a rule-based
classifier will be used so that the partitioning is expressed as a set of
rules that can be easily adapted to programming logic. The pipeline of
the adaptive redirected walking system can be seen in Figure 3.

5 COPPER
In this section, we introduce the Combinatorially Optimized Path-
Planned Exploration Redirector (COPPER). COPPER is a novel auto-
mated approach to static redirection planning that is applicable to any
deterministic virtual path. COPPER assumes the user’s virtual path
consists of going from one point of interest to another in succession,
without any detours or major deviations. The algorithm consists of two
main components: planning and execution. The planning component is
an offline search for the optimal mapping of the user’s virtual path to a
trajectory within the physical space. The execution component of COP-
PER is performed at runtime and aims to ensure that its plan is executed
as expected by dynamically adjusting gains to compensate for the user’s
locomotion behavior, keeping the redirection results similar to the ex-
pected planned path. The online component of COPPER is based on
the counter-deviation technique introduced by Azmandian et al. [3, 4];
therefore, this paper focuses on the offline planning component.

Static planning takes a given virtual path, expressed as a series of
waypoints, and calculates the series of gains that result in the cor-
responding optimal real trajectory (i,e., incurs minimal resets). The
simple approach to solving this problem would be to enumerate over all
possible real trajectories that are created by combinatorially applying
every possible gain value to each virtual path segment. This brute force
strategy would then pick the gain values that yield the best trajectory.
Therefore a sequence of gain values that would minimize the number
of incurred resets would be considered optimal. Since the set of gain
values is continuous, there are an infinite number of possible combi-
nations that the brute force approach would have to compare, making
this computationally infeasible. To solve this issue, COPPER reduces
the number of compared trajectories by pruning the search space. We
hypothesize that these simplifications will make this problem computa-
tionally tractable and would still allow COPPER to find an optimal or
near-optimal solution.

COPPER’s approach to finding the best choice of gains is to explore
all possible gain choices at the same time with an algorithm similar
to a breadth-first-search. First, we break down the virtual path into
smaller segment of turns and walks. Then we begin to process these
segments one at a time. For each segment, we entertain all possible
gain choices (causing branches in the search tree) which may be in the
form of rotation, translation, or curvature gains and also possibly resets
if a boundary is reached. Therefore, as each segment is consumed,
more and more possibilities are created, equating to all the possible
gains choices being considered. COPPER also performs pruning in a
manner that aims to keep the problem manageable without discarding
elements that would preclude it from finding an optimal solution.

5.1 Simplifications and Assumptions
COPPER makes two assumptions while searching for the optimal set
of gain values. First, it is assumed that the user will walk from one
waypoint to the next in a straight line, while directly facing the desti-
nation waypoint. Additionally, when the end waypoint is reached, the
user will rotate in place to face the subsequent waypoint before walk-
ing towards it. This simplification allows for easy calculation of the
predicted user’s real trajectory under the influence of redirection. Fur-
thermore, the online execution component of COPPER, which includes
a counter-deviation mechanism [3], will help ensure that the user’s
locomotion behavior will not cause a divergence from the predicted
outcome despite this simplification.

The other simplification is made to the range of gain values and reset
angles. Rather than using a continuous range, COPPER selects a finite
subset of discrete values. While this may cause COPPER to find a
solution that is sub-optimal, we can improve the outcome by increasing
the set of values sampled from each range. In this work, we select
3 values for each of the different types of gains, and 5 values for the
reset angle. For instance with translation gains we only consider the 3
values for minimum, maximum, and no gain applied. As for resets, the
target user orientations we consider angles 0, ±30, ±60 deg. with the
boundary normal (e.g. 0 deg. requires the user to face perpendicular to
the wall, facing into the physical space).

5.2 Data Structures
While searching for the optimal trajectory, COPPER uses two data
structures to keep track of contending potential solutions. The first
is an action, representing a decision made by the planning strategy
containing parameters used at a portion of the virtual path. There are 3
types of actions, each corresponding to a specific movement required to
traverse the virtual path. A turn action is selected for the portions of the
virtual path when the user reaches a waypoint and has to rotate in place
to face the next waypoint. Therefore, the turn action would contain
the rotation gain applied during the turn. Walk actions correspond to
the walking segments from one waypoint to another. They contain the
fixed translation and curvature gain that is applied by the static planning
redirection strategy while the user moves along the virtual path segment.
If COPPER predicts that the user is unable to reach the end waypoint
without crossing the boundary of the physical space, it will create a
reset action to determine the reset angle that the reorientation task
should use when the user needs to be reset.

In order to keep track of all the decisions its made, COPPER uses
a data structure called a search node. A search node encapsulates the
information required to process virtual path segments at each search
iteration. It includes the user’s current pose (position and orientation) in
the real world, the score of the planned real trajectory, and the sequence
of actions taken up until this iteration.

5.3 Performing the Search
Before performing the search, the virtual path is converted from a list
of consecutive waypoints to an ordered sequence of moves. These
describe the type of movement a user will perform when traversing the
virtual path, consisting of rotate-to-face and walk-to-next moves.

A rotate-to-face move is the movement a user has to perform when
turning in place to face the next waypoint. This move maps directly
to a turn action. Therefore, when processing a rotate-to-face move,
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Fig. 4. Illustration of how COPPER expands a node when processing
the virtual path. In this example, the user (green) makes a 90-degree
left turn and walks forward in the virtual environment. Based on different
combinations of translation, rotation, and curvature gains, the user’s
trajectories in the physical world (blue) result in 27 different possible end
positions (red circles).

COPPER will generate 3 search nodes, each containing a turn action
with a unique value from the set of rotation gains.

The other movement the user will perform is walking from one
waypoint to the next in a straight line, which is considered a walk-to-
next move. This move will always map to at least 9 walk actions, one
for each of the unique translation and curvature gain value combinations
(Figure 4). If the user’s predicted trajectory does not fit within the
physical space, reset actions will be added as needed, thus increasing the
number of created search nodes by a factor of 5; the five-fold increase is
due to the number of possible reset angles. COPPER models the user’s
reaction to a reset prompt by assuming the user will continue to walk
for 0.75 meters before coming to a complete stop. That reaction time
is factored into the remaining path segment before creating additional
walk actions. However, if it is calculated that the user will reach
the destination before responding to the reset, the action is ignored.
Therefore, for a virtual path segment that requires one reset, COPPER
will create up to 9×5×9 search nodes,

When processing a move, COPPER selects an appropriate action
and applies it to all the current search nodes. As each search node is
evaluated, new child nodes are created for all the possible values of the
action. The planning strategy calculates the user’s trajectory and its
score for each action value. The set of produced search nodes is then
pruned before repeating the search process on the next move.

5.4 Pruning
As each move is processed, the number of nodes at each iteration
rapidly increases. To keep the node list manageable, search nodes
that are similar need to be discarded. In order to achieve this, we
classify nodes such that they can be split into groups with similar traits.
The intuition behind the pruning is that any two nodes with similar
ending poses and scores are equivalent, regardless of the sequence of
gains (i.e. the real trajectory traversed) that lead them to the end pose.
Furthermore, if an optimal trajectory can be created by expanding one
of these nodes, it can also be found by expanding the other. Therefore,
retaining only one is sufficient for finding an optimal solution.

To achieve this pruning, as moves are processed, their search nodes
are assigned to a configuration class based on the calculated user pose
in the physical space. This essentially discretizes the set of possible
user poses by creating bins. Therefore, a configuration class can be
represented as a tuple which contains a section of the physical space
along with a continuous range of user orientations. The number of
configuration classes depends on the granularity of discretization. For
this experiment, our 10× 10 meter physical space is converted to a
grid of 1×1 meter cells, and the orientation range is divided into 15
degree intervals (Figure 5). This yields a total of 10×10×24 = 2400
configuration classes.

Additionally, if the physical space shape is symmetric, further re-
duction can be applied to the search nodes. For example, a rectangular
physical space can be divided into 4 equal quadrants. Any arbitrary

Fig. 5. A simplified example of configuration classes used to discard
similar nodes. The node’s real world position is discretized by a grid in
the physical space. The orientation is also discretized by partitioning the
space of possible angles. By retaining at most one node from each class,
we ensure the number of nodes throughout the search is bounded (by
the number of classes). In our experiment, a 10x10 grid was used with
orientation intervals of 15 degrees.

configuration class in one quadrant can be transformed to a similar one
in another quadrant by rotating it around the center of the rectangle
by a multiple of 90 degrees. Therefore, in this example, this bijec-
tive mapping allows COPPER to reduce the number of configuration
classifications by 75% (a total of 600 classes for this experiment).

After each search node is grouped into its respective configuration
class, only the node with the best score is kept from each category. This
puts an upper bound on the total number of search nodes at each search
iteration—there can only be as many search nodes as there are unique
configuration classifications (Figure 6). Although it may seem like
potential optimal solutions are discarded, the rationale behind this is
that nodes belonging to the same configuration classification offer the
same spatial advantages for redirection. We assume that if an optimal
path can be found by using one of the disposed nodes, a similar optimal
path can also be obtained using the retained representative. Since the
planning component of COPPER is run offline, execution speed is
not a concern, thus the granularity for all the discretizations can be
adjusted to find more possible solutions, increasing the likelihood of
including an optimal solution, provided that the system has sufficient
memory. Configuration classes are a trade-off between calculation
complexity/feasibility and optimality.

5.5 Utility Function
The utility function assigns a score to each search node based on its cur-
rent and previous actions. This score is a metric for how (un)desirable
the planned trajectory is. In this implementation of COPPER, the only
factors that affect the score are the number of resets encountered along
the path and the number of near-reset situations. A near-reset situation
is when the user’s real world end position after a virtual segment is in
one of the configuration classes that represents a cell on the border of
the physical space. The score of a search node is defined recursively as
the sum of the parent node’s score, the number of resets encountered
for this move, and an ε � 1 penalty if the planned trajectory results in
a near-reset. Since a lower score indicates a more desirable trajectory,
after all the moves have been processed, the planning strategy will
select the remaining search node with the lowest score. Although our
implementation only scores search nodes based primarily on resets,
other factors like total amount of redirection could also be factored in.

5.6 Offline Pre-Calculations
Static planning solves the problem of finding an optimal redirection
strategy when both the user’s starting pose in the real world and the
virtual path to be traversed are known in advance. However, COPPER
can also be extended to operate in conditions where either of these
elements are not known. Examples of this include: a) Designing a
walkthrough without a fixed initial initial pose (this flexibility can
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Fig. 6. Configuration class representatives in consecutive iterations.
The top row represents the input configurations. Each circle is a repre-
sentative of a configuration class. Once a portion of the virtual path is
processed and the tree is expanded, only the best representative leaf
node for each output class is retained for the next iteration. Note that
each class would have at most (and possibly no) representatives.

allow finding a more optimal path); b) Recovering from excessive user
deviation by rerunning COPPER’s planning; and c) Using COPPER as
part of adaptive redirection which would require instantly switching to
COPPER at runtime.

The solution to dealing with this uncertainty is to pre-calculate the
optimal strategy for all possible scenarios. By having a lookup table,
we can match the specific user pose and virtual path at runtime and
quickly access the pertinent optimal strategy. The table contains one
entry for a representative of each configuration class, and at runtime
the user’s actual pose is matched to the representative of its class. As
for the virtual paths, the table has entries for all sub-sequences in the
environment’s virtual path that have no branches, and at runtime the
matching sequence is used to find the optimal strategy.

6 EXPERIMENT: CONSTRUCTING ADAPTATION RULES

The goal of this experiment is to establish a methodology to derive the
rules for selecting the best redirection strategy in adaptive redirection.
This is achieved by using machine learning to create a classifier that
maps prediction graphs to corresponding best-performing strategies.
The training data for the classifier was generated from a simulated user.

6.1 User Simulation
To measure the performance for each condition, we performed simu-
lated experiments using a modified version of the simulated user func-
tionality included in the open-source Redirected Walking Toolkit [7].
In this design, a walking user was simulated by an autonomous agent.
The agent was programmed to traverse the virtual path by walking
toward the next waypoint with a constant linear velocity of 1 m/s while
maintaining its heading toward the waypoint. Upon reaching a way-
point, the simulated user would stop and turn in place with an angular
velocity of 90 deg/s to face the next waypoint. When the user’s distance
from a boundary dropped below 1 meter, a reset would be triggered. At
this point, the user would stop and rotate in place at 90 deg/s until the
reset task was complete.

For this experiment, we added the functionality to simulate a user’s
delayed response to a reset prompt. This was modelled as a 0.5 second
delay in reacting to a reset, and a constant linear deceleration that
caused the user to come to a full stop in 0.5 seconds. If the waypoint
was followed by a branch in the virtual path, the simulated user would
randomly select one of the possible path options. For this study, no
noise was introduced to the simulated user’s translation and rotation,
thus guaranteeing that the simulated user would walk exactly along the
virtual path. The simulation platform emulated a framerate of 60Hz
and was implemented in the Unity game engine [56].

6.2 Procedure
The redirection strategies investigated were steer-to-center (S2C),
FORCE, and COPPER, all of which were paired with the face-center
reset technique. We also measured the performance for a baseline
“No Redirection” strategy. In this condition, no redirection gains were
applied and only the reset would prevent exceeding the boundary limits.

Factor Analysis None S2C FORCE
seg. length F(3,3341) 1183.84* 11.76* 279.33*
turn angle F(3,3341) 1917.34* 798.32* 46.22*
branch prob. F(10,3341) 1.10 1.29 213.66*

Table 1. Statistical results (F-values) of the linear regression analyses for
the No Redirection, Steer-to-Center, and FORCE strategies. *p < .001

To generate prediction graphs, all three defining characteristics were
varied. The segment lengths (in meters) were uniformly sampled from
one of the following ranges: (0.01,2.5), (0.01,5), (0.01,7.5), and
(0.01,10). The absolute turn angle distributions were uniformly sam-
ple from ranges: (0°,45°), (0°,90°), (0°,135°) and (0°,180°). The
branching likelihood ranged from 0 to 1 in increments of 0.1. The
number of the waypoints the simulated user cleared was adjusted based
on the segment length distribution such that the expected virtual path
would be 500 meters. For instance, a segment length distribution of
[0.01,2.5] would have the user traverse a path of 400 waypoints.

For each trial of this experiment, the simulation began by placing
the user at the center of a 10m×10m physical space facing the positive
Z direction. The user’s prediction path would dynamically expand after
each waypoint was cleared to provide a 3-waypoint-deep horizon of
navigation options. The choice of 3 levels deep was selected based on
the FORCE algorithm functionality. During each trial, the number of
resets were tallied and the overall virtual distance travelled was logged.
Each condition was repeated a total of 20 times.

To gauge performance we use reset-per-distance, which is calculated
by dividing the reset count by the virtual distance traveled. This is
essentially the reset count normalized by virtual path length because
not all randomly generated paths have the exact same length. Therefore,
a lower reset-per-distance corresponds to superior performance.

7 RESULTS

The state of the prediction graph dictates the applicability of each
strategy and in turn determines what options are available for adaptation.
Based on this, we identify three cases: a) the prediction graph is not
available, for which S2C would be the only option, b) the prediction
graph is available but contains branches, in which case we must select
between S2C and FORCE, c) the prediction graph has no branches,
making all strategies viable. Case a requires no adaptation rules, so we
examine cases b and c in this section.

7.1 Branching Prediction Graph
We first examine the performance of the redirection strategies across
all prediction graph properties (Figure 7). To simplify the analysis, we
modeled effects on each redirection strategy separately. The goal was
to broadly explore how reset counts per unit distance were affected
by path characteristics, and to understand relative importance of each
factor rather then derive a precise functional relationship. Therefore, we
modelled the relationship between reset count and explanatory variables
as main effects, ignoring any possible interactions.

First, we constructed a linear model for the No Redirection strat-
egy, with reset per distance as a continuous response variable and max
segment length, max turn angle and branching probability as explana-
tory main factors (see Table 1). Max segment length and max turn
angle were significant predictors of reset per distance, while branching
probability was not a significant predictor. The general trend was for
the number of resets per unit distance to decrease with max segment
length; for example, for 10m length, max segment the reset per distance
decreased by 28.9% vs. 2.5m max segment length case (p < .001).
The reset per distance also increased with max turn angle. For exam-
ple when comparing the 45° and 180° max turn angle situations, the
number of increased by as much as 57.5% in the latter case (p < .001).

For the S2C strategy, a linear model with reset per distance as the re-
sponse variable and max segment length, max turn angle and branching
probability as main effects explanatory variable revealed max segment
length and max turn angle as significant variables while branching
probability was not a significant predictor. The general trend was for
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Fig. 7. Performance comparison of contending redirection strategies across prediction graph properties for the branching prediction graph scenario.
The Y axis shows normalized reset values, therefore lower values indicate better performance. Error bars show standard error. We can see how
each redirection strategy interacts differently with the factors, resulting in S2C (green) being superior in some cases and FORCE (blue) in others.
The No Redirection (red) results show how the prediction graph can influence performance even when no redirection is used.

the number of resets per unit distance to increase with max segment
length; for example for 10m length max segment the reset per distance
increased by 2.5% vs. 2.5m max segment length case (p < .001). For
the max turn angle, reset per distance decreased by 4.4% from the 45°
to 90° (p < .001), but from 90° to 180° it consistently increased up to
a factor of 24.4% (p < .001).

Finally, for the FORCE strategy, a linear model with reset per dis-
tance as the response variable and max segment length, max turn angle
and branching probability as main effects explanatory variable revealed
that max segment length, max turn angle, and branching probability
were all significant predictors. The reset per distance measure in-
creased by 19.5%, with max segment length changing from 2.5 to 10
(p < .001). The reset per distance measure decreased with max turn
angle. For example, when comparing the 45° and 180° max turn angle
situations, the number of decreased by as much as 6.3% in the latter
case (p < .001). For branching factor, reset per distance increased by
47.6% as branching probability increased from 0 to 1 (p < .001).

In order to determine adaptation rules for the branching prediction
graph case, we labeled each condition according to the strategy that
performed best. This was achieved by measuring the mean of reset-per-
distance of each strategy for each tuple of branching factor, segment
length, and turn angle, and labeling the tuple with the strategy with
the lowest mean reset-per-distance. We then used a PARTS rule-based
classifier with a 10-fold cross-validation to train and assess the accuracy
of our model. PARTS outperformed other rule-based classifiers with an
accuracy of 98.9%. However, using a Random Tree classifier can also
fully fit the model and achieve a 100% accuracy using a tree with 47
nodes. The rules derived by PARTS can be seen in Table 2, identifying
in for each region of the prediction graph space what strategy should be
used. These rules are well in line with the intersection points between
performance graphs in Figure 7.

7.2 Non-Branching Prediction Graph
We now focus on cases where the prediction graph has no branches. In
this case, all strategies are applicable. The comparative performance of
each strategy can be seen in Figure 8.

Similar to the previous analysis, we first investigated the effect of
each prediction graph property on COPPER. To achieve this, we con-
structed a linear model with reset per distance as a continuous response

variable and max segment length and max turn angle as explanatory
main factors. Max segment length (F(3,304) = 299.93, p < .001) and
max turn angle (F(3,304) = 1450.77, p < .001) were both significant
predictors of reset per distance. The general trend was for the number
of resets per unit distance to increase with max segment length. For ex-
ample, for the 10m length max segment, the reset per distance increased
by 155.0% vs. 2.5m max segment length case (p < .001). The reset
per distance also increased with max turn angle. For example, when
comparing the 45° and 180° max turn angle situations, the number of
decreased by as much as 88.2% in the latter case (p < .001).

To directly compare redirection strategies while accounting for
the properties of the path, we constructed a linear model with reset
per distance as an explanatory variable. The model included max
turn angle, max segment length, and redirection strategy as predic-
tors. We considered only main effects, and interaction terms were
suppressed. The model revealed that redirection strategy was the
most powerful predictor of reset count per unit distance (F(3,1215) =
1170.25, p < .001), followed by max segment length (F(3,1215) =
2.99, p = .029). Max turn angle was not a significant predictor of per-
formance (F(3,1215) = 2.09, p = 0.1). The post-hoc analysis using
Tukey’s HSD shows that after accounting for the effects of max turn an-
gle and max segment length, the number of resets per unit distance for
COPPER strategy (0.026±0.001) was significantly lower compared
to that for FORCE (0.075± 0.001, t(1269) = 25.42, p < .001), S2C
(0.096± 0.001, t(1269) = 36.38, p < .001), and the No Redirection
control condition (0.138±0.001, t(1269) = 58.17, p < .001). There-
fore, the rule for this case is simply to use COPPER when the branching
likelihood is 0.

8 DISCUSSION

Prediction Graph Properties. The performance of the baseline
condition (No Redirection) helps with understanding whether perfor-
mance can be attributed to the redirection strategy or a property of
the prediction graph. For the max segment length property, the base-
line indicates that longer segments result in improved performance.
However, in the presence of redirection, performance declines as the
segment length becomes larger, and the magnitude of this effect be-
comes greater as we advance from S2C, to FORCE, to COPPER. This
can be explained as follows: strategies with greater predictive accuracy
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Rule Strategy
1 θ <= 90 ∧ P(b)> .2 S2C
2 P(b)> .6 ∧ θ <= 135 S2C
3 l <= 5 ∧ θ > 90 ∧ P(b)<= .5 FORCE
4 θ <= 45 ∧ l > 2.5 S2C
5 P(b)<= .2 ∧ θ > 90 FORCE
6 l > 7.5 ∧ θ <= 135 S2C
7 l > 5 ∧ P(b)> .6 S2C
8 l > 7.5 ∧ P(b)> .3 S2C
9 l > 2.5 ∧ θ > 135 FORCE

10 P(b)> .6 S2C
11 l <= 5 ∧ P(b) = 0 FORCE
12 l > 5 ∧ θ <= 90 S2C
13 P(b)<= .4 FORCE
14 l > 2.5 S2C
15 − FORCE

Table 2. Derived adaptation rules for determining the most effective
strategy in the branching prediction graph scenario. With these 15 rules,
we can programmatically determine how to switch between strategies
at runtime with minimal computational overhead. P(b) is the branching
probability, l is the max segment length, and θ is the max turn angle.

can make use of smaller path segments by using redirection to contain
the path. The reduced performance of our baseline with smaller seg-
ments can also be explained by the lack of redirection, which causes
smaller segments to get stuck near a boundary and experience frequent
resets. However, longer path segments increase the odds of escaping a
near-boundary region.

For the max turn angle property, we see that the baseline and S2C
mostly experience a reduction in performance. However, for the plan-
ning strategies, performance improves with increased turn angles (espe-
cially for COPPER). This can be explained by the fact that increasing
the turn angles allows for planning strategies to have more flexibility
with the range of directions they can steer the user to keep the path
contained within the physical space. The reduced performance of the
baseline condition can similarly be explained by the fact that larger turn
angles can cause the user to keep turning back towards the physical
space boundary after a reset, effectively undoing the reset task. And
similarly, when the turn angles are smaller, the user is more likely to
escape the boundary area after a reset.

As expected, branching has no significant effect on non-planning
strategies. However, the FORCE results were consistent with our expec-
tations for dynamic planning strategies, where virtual path uncertainty
(i.e. user unpredictability) reduces performance.

Limitations and Future Work. The empirical results reported in
this paper were computed using a simulation framework. Simulation
is commonly employed by researchers to evaluate redirected walking
algorithms in studies that are impractical or impossible to conduct with
real users (e.g. [5, 8, 11, 21, 23, 32, 54, 55, 60, 65]), and recent work has
been conducted to validate this approach [10]. Although simulation is
useful, ultimately these strategies need to be deployed and evaluated
with human participants to understand their effects on the user experi-
ence. Furthermore, in a live VR system, multiple redirection techniques
such as rotation and translation gains are often combined; however, the
impact of adaptively switching between different redirection strategies
on the user experience has not yet been studied.

Adaptive redirection was conceived to be extensible, and a multitude
of strategies could be implemented within this framework. However,
one limitation is that the adaptation rules for switching between them
need to be derived for a specific physical space and a virtual environ-
ment that can be represented using a prediction graph. Because the
performance of adaptive redirection is by definition context dependent,
evaluations should also be conducted using a wider variety of physical
configurations and virtual scenes. The methodology presented in this

Fig. 8. Performance comparison of contending redirection strategies
across prediction graph properties for non-branching prediction graphs.
The Y axis shows normalized reset values, therefore lower values indicate
better performance. Error bars show standard error. We can see how
each redirection strategy interacts differently with the factors, but in all
cases COPPER consistently dominates other strategies.

paper can serve as a proof-of-concept to guide future experiments that
integrate new strategies into the adaptive framework.

In this paper, COPPER was compared with representative strategies
from the general and dynamic planning categories in a rectangular
physical space free of obstacles. However, over the past several years,
novel redirected walking algorithms have been introduced to handle
more complex physical configurations by applying concepts such as
alignment [59], artificial potential fields [11, 32, 55], and machine
learning [15, 29, 50]. In future work, COPPER can also be extended
to support arbitrary physical spaces and compared with these modern
approaches to redirected walking. For a linear VR experience with a
non-branching prediction graph, we would expect COPPER to perform
similarly or better than other strategies because it can analytically
determine a near-optimal solution. However, it would still be valuable
to empirically demonstrate the performance differences between these
methods under varying conditions.

9 CONCLUSION

In this paper, we formally defined a redirected walking system and
established the theoretical foundations necessary for engineering com-
plex redirection strategies. The framework presented in this paper
contributes to a better understanding of how previous work in the field
fits together within a unified scope, and also serves as a blueprint for
future advancements in the redirected walking landscape. To advance
the state-of-the-art for static planning strategies, we introduced the
COPPER algorithm, which can compute a near-optimal solution for lin-
ear, choreographed redirected walking experiences. We then presented
the adaptive redirection meta-strategy, which dynamically chooses the
most appropriate redirection strategy based on the current situation. Fi-
nally, we demonstrated how performance data could be used to develop
adaptation rules, which involves partitioning the spectrum of contexts
into regions according to the strategy that performs best. In summary,
the adaptive redirection meta-strategy provides a foundation for making
redirected walking work in practice and can be extended to improve
performance in the future as new redirection strategies are introduced
and integrated into the framework.
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