
Automated Path Prediction for Redirected Walking
Using Navigation Meshes

Mahdi Azmandian∗ Timofey Grechkin∗ Mark Bolas∗† Evan Suma∗

∗USC Institute for Creative Technologies †USC School of Cinematic Arts

Figure 1: Navigation meshes and short term path prediction graphs. (left): Sample virtual environment overlayed with navigation mesh polygons
shown in green and navigation graph shown in red. Note that edges of navigation graph represent connectivity between polygons rather than
prediction of user’s possible path. (right): Sample short-term path prediction graphs generated from various starting points. The starting point is
shown as green dot.

ABSTRACT

Redirected walking techniques have been introduced to overcome
physical space limitations for natural locomotion in virtual reality.
These techniques decouple real and virtual user trajectories by sub-
tly steering the user away from the boundaries of the physical space
while maintaining the illusion that the user follows the intended vir-
tual path. Effectiveness of redirection algorithms can significantly
improve when a reliable prediction of the users future virtual path
is available. In current solutions, the future user trajectory is pre-
dicted based on non-standardized manual annotations of the envi-
ronment structure, which is both tedious and inflexible. We pro-
pose a method for automatically generating environment annotation
graphs and predicting the user trajectory using navigation meshes.
We discuss the integration of this method with existing redirected
walking algorithms such as FORCE and MPCRed. Automated an-
notation of the virtual environments structure enables simplified de-
ployment of these algorithms in any virtual environment.

Index Terms: H.5.1 [Information Interfaces and Presenta-
tion]: Multimedia Information Systems—Artificial, augmented,
and virtual realities; I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual reality

1 INTRODUCTION

It is highly desirable for many practical applications to enable natu-
ral exploration of interactive virtual environments in a manner sim-
ilar to the way people move in the real world. Physical walking in a
tracked space has many advantages over other locomotion methods,
however the size of the virtual environment that can be explored is

∗e-mail: {mazmandian, grechkin, bolas, suma}@ict.usc.edu

ultimately constrained by the physical dimensions of the tracked
area.

Redirected Walking (RDW) attempts to address this issue by
introducing subtle, unnoticeable discrepancies between the user’s
physical and virtual motions. Due to accumulation of these dis-
crepancies user trajectories in real and virtual environment diverge
over time. As a result, RDW algorithms can strategically steer users
away from the boundaries of the physical tracked space to enable
exploration large virtual environments.

Original RDW algorithms such as Steer-To-Center consistently
steer the user toward a particular goal in the real environment (such
as the center of the tracked space) without taking into account the
user’s possible future travel direction in the virtual space. While
this approach works well, the performance of RDW algorithms can
be significantly improved using short-term path prediction that de-
scribes the user’s navigation options given the the layout of the vir-
tual environment. In the simplest case such path prediction assumes
that all possible travel directions are equally likely. In recent years
algorithms such as MPCRed [4] and FORCE [10] attempted to cap-
italize on the path-prediction approach to improve redirection effi-
ciency. The adoption of such algorithms requires annotation of vir-
tual environments with graphs describing possible user trajectories.
When done manually such annotations can be both tedious to gen-
erate and insufficiently flexible at run-time. Users can significantly
deviate from expected path when navigating wide open areas or cir-
cumventing dynamic obstacles, which may impact performance of
RDW algorithms.

In this work we propose an algorithm for automatically pre-
dicting the user’s possible short term trajectories, which relies on
navigation meshes, a method commonly used for path planning by
computer-controlled characters in gaming applications. Our algo-
rithm can be automatically deployed in an arbitrary virtual environ-
ment without the need for manual layout annotation and can dy-
namically adjust path predictions relative to actual user position at
run-time. Instead of imposing a fixed layout graph to the environ-
ment, we dynamically generate a local short-term path prediction

63

IEEE Symposium on 3D User Interfaces 2016
19–20 March, Greenville, SC, USA
978-1-5090-0842-1/16/$31.00 ©2016 IEEE

graph with fixed search horizon originating at user’s exact position.
This path prediction graph can be directly passed to existing redi-
rection algorithms. Our proposed pipeline is efficient, standardized,
and easily deployable.

2 BACKGROUND

2.1 Redirected Walking
Redirected walking was first introduced by Razzaque [5] as a poten-
tial solution to the problem of exploring large virtual environments
using natural locomotion within a limited physical tracked space.
This is made possible by the human vision dominating the vestibu-
lar system, which means that visual illusions can be used to “steer”
unsuspecting users away from the boundaries of physical tracked
space.

The method works by injecting subtle discrepancies between the
user’s real and virtual motions. These discrepancies may include
gains (faster or slower movement in virtual environment, compared
to the real world movements) for both rotations and translations.
If the differences are sufficiently small, they remain unnoticed by
most users. Stenicke et al. [7] used psychometric methods to esti-
mate perceptual sensitivity thresholds for translation, rotation, and
curvature (rotations of virtual environment around moving user)
gains for RDW. When gains are applied over time, user’s real walk-
ing trajectory is decoupled from her virtual trajectory. As a result,
a long virtual path may correspond to a different physical path con-
densed to fit into the bounds of tracked space. At the same time
user remains unaware of the applied manipulations.

RDW algorithms can be classified into two categories: reactive
and predictive. Reactive algorithms such as Steer-To-Center and
Steer-To-Center use the current user’s physical location and direc-
tion of travel within physical tracked space to determine the best
action at each calculation step. For example, Steer-To-Orbit al-
gorithm attempts to apply a combination of rotation and curvature
gains to steer the user towards the center of the physical tracked
space. In contrast, predictive algorithms [10, 4, 1] attempt to lever-
age information of user’s future path in the virtual environment to
optimize redirection parameters. This approach involves investigat-
ing the outcome of the user’s future actions under various parame-
ter choices and choosing the settings that perform the best based on
some utility function. Studies suggest that information about user’s
future short-term action possibilities enables predictive RDW algo-
rithms to outperform traditional reactive algorithms.

Predictive RDW algorithms typically estimate the user’s future
trajectory by relying on representation of virtual environment’s lay-
out in the form of bidirectional graph. This annotation provides
a high-level abstract description of possible paths that a user can
take. Edges of such a graph represent the general expected direc-
tion of travel for possible paths in a particular area of the virtual
environments, while nodes correspond to decision points where po-
tential paths diverge. At run-time, the user’s actual position is ap-
proximated using the nearest point on the graph. When the user is
approaching a fork, all outcomes are assigned a certain probability
weight (equal weights are commonly used). Most predictive algo-
rithms operate with predictions based on a fixed search horizon,
defining how far into the future the algorithm will inspect possible
user paths.

The layout annotation graph can be manually constructed for a
particular environment from arbitrarily shaped segments or using a
predefined set of path primitives (straight lines and arcs conforming
to predefined specification). This approach can be tedious and re-
quires significant preparation before an algorithm can be deployed
in a new virtual environment.

2.2 Navigation meshes
Artificial intelligence algorithms for autonomous agents in com-
puter games often face a similar problem of describing possible

paths through navigable areas in 3D virtual environments. This
problem has been long studied and a variety of methods have been
designed to represent a navigable environment such as navigation
meshes [9].

Navigation meshes [6] represent navigable surface of the envi-
ronment as a polygonal mesh. Agents can freely navigate across
polygons with shared edges. In addition, special links can be used
to represent connectivity between polygons that do not share an
edge. For example, such links can represent adjacency when an
agent can jump from one platform to another or step vertically from
a lower lying surface to a higher ground (or vice-versa). An attrac-
tive property of navigation meshes is their ability to represent the
free space available adjacent to a path in the environment, which
enables pathfinders to perform local obstacle avoidance.

Navigation meshes can be generated automatically. A well-
known algorithm for automatic navigation mesh generation was in-
troduced by Tozour [8]. It first determines walkable polygons in
a 3D environment by comparing their normals with the up vector,
and then iteratively merges together as many polygons as possible.
Since then, various implementations have been proposed by both
academic researchers and game engine developers extending path-
finding capabilities and optimizing the performance. Navigation
meshes have been widely adopted as the standard solution to nav-
igation in gaming engines and are readily available in commercial
game authoring platforms such as Unity3D and Unreal.

In this paper we explore how navigation meshes can be used
to generate short-term dynamic path predictions suitable for using
with RDW algorithms. These representations can be constructed
at run-time and can take into account both actual user position and
dynamic changes in the environment.

3 PATH PREDICTION ALGORITHM

Our goal is to design an algorithm to automatically generate layout
annotation graphs to be used with existing predictive RDW algo-
rithms. In practice such algorithms operate with limited prediction
horizon and thus typically prune the nodes of path prediction graph
beyond certain fixed distance d. Therefore, a partial layout annota-
tion representing short-term path prediction should be sufficient.

Algorithm 1 oulines the structure of the proposed procedure. The
algorithm takes as input the current user position Pos, navigation
graph of the environment NavGraph, and maximum path length
d (corresponds to fixed search horizon). Here navigation graph
(see Figure 1 (left)) is a connectivity graph derived from naviga-
tion mesh. Each navigation mesh polygon is represented as a node.
Edges represent connectivity between polygons in the navigation
mesh. Additionally, each node is assigned a location coinciding
with the centroid of its polygon in the virtual environment.

Algorithm 1 Generate path prediction graph
function PathPredictionGraph(Pos, NavGraph, d):

Find polygon node S in NavGraph containing Pos
S.position← Pos
B, T, prevPG[]← DepthLimitedDijkstra(NavGraph, S)
Define V← B ∪ T ∪ S
for all vertices u and v in V do

if {u,v} ∈ NavGraph.edges then
add {u,v} to E

for all vertices v in V do
V← V ∪ path(v, prevPG[v]).vertices
E← E ∪ path(v, prevPG[v]).edges

return V, E

First, the algorithm finds node S in NavGraph corresponding to
the navigation mesh polygon currently occupied by the user. The
assigned location of this node is shifted to user position Pos.

64

Figure 2: Sample output of modified Dijkstra algorithm. Navigation
graph is explored up to a fixed depth. Branching nodes are marked
in red, and terminal nodes are marked in green. Each marked node
has a pointer to its previous branch (or source) defined by prevPG[].
For illustration simplicity only a subset of pointers is shown.

The next step is to query navigation graph for all possible paths
(in any direction) starting from S and not exceeding length d. The
process yields a set of branching nodes B (where potential paths can
split), a set of terminal nodes T (where potential paths terminate),
and the connectivity function prevPG[] between the nodes in the
above two sets. This is accomplished using a modified version of
Dijkstra’s algorithm [2] which terminates when a certain distance
from the source has been explored (see Algorithm 2).

Finally, the path prediction graph is constructed. We define the
set of vertices V as the union of starting node S, branching nodes B,
and terminal nodes T . Using connectivity information encoded in
prevPG[] we add appropriate edges to set E. To better understand
this last step it is helpful to consider the outputs generated at the
previous step in greater detail.

Algorithm 2 Modified Dijkstra algorithm
function DepthLimitedDijkstra(Graph, source, d):

Define vertex sets Q, B, and T
for all vertex v in Graph do

dist[v]← INFINITY
prev[v]← NULL
add v to Q

dist[source]← 0
while Q is not empty do

u← vertex in Q with min dist[u]
remove u from Q
for all neighbor v of u do

alt← dist[u] + length(u, v)
if alt < dist[v] then

dist[v]← alt
prev[u]← u

if deg(u) > 2 then
add u to B

if T contains prev[u] then
remove prev[u] from T

add u to T
if B contains prevPG[u] then

prevPG[u]← prev[u]
else

prevPG[u]← prevPG[prev[u]]
if path(source, u) is longer than d then

break {path() return shortest navigable path}
return B, T, prevPG[]

The Dijkstra algorithm (Algorithm 2) takes an input Graph and
a starting node S and constructs a nearest-first path search tree de-
scribing all possible paths between the nodes of the Graph. We

Figure 3: Automatically generated prediction graph for six sample
environments.

modified the original algorithm in two important ways. First, the
depth of the tree is limited by the maximum length of the path d.
Second, the algorithm constructs a set of branching nodes B and
terminal nodes T and keeps the track of the connectivity between
these nodes within the search tree using function prevPG[]. For
each vertex u that is visited, if deg(u) > 2, we add this vertex to
a set of branching nodes B. The algorithm also maintains a set of
terminal nodes T . Also at each iteration step, in addition to updat-
ing the Dijkstra’s prev function, we define function prevPG[] that
points to previous branching node (or source S). For a vertex u be-
ing visited, prevPG[u] is set to prevPG[prev[u]] unless prev[u] is in
B, in which case it will be set to prev[u]. The algorithm terminates
when all nodes within distance d from the source are visited (see
Figure 2).

The node sets B and T , along with node S, form the initial set
of vertices V of the prediction graph. Since Dijkstra’s algorithm
removes cycles from the graph by returning a tree, we reintroduce
the lost connections by connecting vertices in V that are neighbors
in NavGraph. We then perform navigation mesh funneling which
yields the shortest path from a series of consecutive polygons. This
is required to remove artifacts manifesting from the artificially in-
serted edges. Then the shortest navigable path between each vertex
in v and it’s predecessor (prevPG[v]) are queried. These paths are
added to the prediction graph to conclude the graph generation.

4 IMPLEMENTATION AND PERFORMANCE ASSESSMENT

We implemented proposed algorithm on the Unity3D platform.
Unity provides native support for automatic generation of naviga-
tion meshes and path queries (e.g. finding the shortest navigable
path between two points in the environments). However, we found
it more convenient to use an add-on package from A* Pathfinding
Project [3] available in the Unity asset store. The A* Pathfinding
API exposes the navigation graph data structure, making implemen-
tation of our algorithm much more straightforward.

4.1 Comparison to manual annotations

To compare our method with manual layout annotations, we re-
laxed the search horizon constraint and generated a path prediction
graph covering the entire virtual environment. Figure 3 shows the
path prediction graphs generated for six test environments. In our

65

Figure 4: Dynamic adjustment of local graph. For different place-
ments of the user (red and green), the local graph adjusts to provide
a prediction that matches the user’s position.

Figure 5: Effect of search depth on execution time. Values are aver-
aged over 25 random placements of the user position in a test envi-
ronment.

judgement these results represent a reasonable replacement for an-
notations that could be constructed manually. There are two types
of artifacts present. First, extra branching nodes are created at the
intersections where more than three paths meet. This is due to the
fact that in the navigation graph each node can not have more than
three neighbors. Second, placement of the intersections depends
on the underlying structure of the navigation mesh and may differ
from the intuitive placement in the manual annotation. Virtual envi-
ronment authors can control this by changing the parameters of the
navigation mesh. While both of these artifacts might affect redi-
rected walking algorithms, we do not believe the resulting change
in performance compared to existing methods will be significant.

In practice, our algorithm periodically generates short-term path
prediction graph (see Figure 1 (right) for some examples) relative to
current location of the user. Figure 4 demonstrates how the graph
updates the trajectory prediction based on user position. In con-
trast, when a manual annotation is used, path prediction is based on
approximating user position by the nearest point on the annotation
graph. Given the importance of the accurate path prediction in the
near vicinity of the user, we believe our method well likely improve
the RDW algorithm performance compared to manual annotations.

4.2 Graph generation time

From a practical standpoint, it is useful to consider time complex-
ity relative to maximum path length. Figure 5 shows the average
execution time for creating a local graph of varying depth. Each
point has been averaged over 25 random starting points in the en-
vironment on the bottom left of Figure 3. On average, our algo-
rithm generated path prediction graphs with search horizon up to
20 meters in 7.5 milliseconds. This compares to 82.5 miliseconds
reported by Nescher [4] for the average planning phase execution of
the MPCRed algorithm. We conclude that our algorithm can pro-
vide updates to the RDW algorithms on every computation cycle.

5 CONCLUSIONS AND FUTURE WORK

In this work, we have proposed an algorithm to automate path pre-
diction for planning RDW algorithms. We have demonstrated how
tedious manual annotation of an entire environment can be replaced
with automatically generated prediction graphs local to the user’s
current position. Dynamically generated path prediction graphs
open the door to supporting advanced prediction techniques such as
forecasting user behavior in non-static environments and increased
prediction accuracy in less constrained architectures. With these
advanced navigation tools, our hope is to allow predictive RDW
algorithms to be easily deployed in any virtual environment.

We have demonstated how short-term path prediction for RDW
planning algorithm can be done automatically using navigation
meshes. Our next step is to integrate this technique into exist-
ing planning algorithms such as FORCE. We can then benchmark
the performance of these automatically-deployable algorithms with
other algorithms such as Steer-To-Center and the original version
of FORCE. We plan to conduct both computer simulations and user
studies to assess the overall benefits of this work.

In addition to enhancing planned RDW algorithms, we intend
to investigate how navigation meshes can further improve aspects
of the general redirected walking problem. Possible avenues of re-
search include: identifying navigation patterns for early user intent
detection (e. g. knowing if the user will turn left or right at inter-
section) and also developing opportunistic dynamic changes in the
environment to steer users away from physical boundaries.

Our algorithm relies mainly on implementation tools readily
available in many game engines, and this allows for integrating
predictive RDW techniques into VR applications relatively effort-
lessly. With the proliferation of consumer-level tracking solutions
this opens the door for greatly improved end-user virtual reality ex-
periences using efficient redirected walking algorithms.

ACKNOWLEDGEMENTS

This work is sponsored by the U.S. Army Research Laboratory
(ARL) under contract number W911NF-14-D-0005. Statements
and opinions expressed and content included do not necessarily re-
flect the position or the policy of the Government, and no official
endorsement should be inferred.

REFERENCES

[1] M. Azmandian, R. Yahata, M. Bolas, and E. Suma. An enhanced steer-
ing algorithm for redirected walking in virtual environments. Proceed-
ings - IEEE Virtual Reality, pages 65–66, 2014.

[2] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[3] A. Granberg. A Pathfinding Project. http://arongranberg.com/astar/,
2015. [Online; accessed 4-December-2015].

[4] T. Nescher, Y.-Y. Huang, and A. Kunz. Planning Redirection Tech-
niques for Optimal Free Walking Experience Using Model Predictive
Control. 3Dui 2014, pages 111–118, 2014.

[5] S. Razzaque. Redirected Walking. PhD thesis, Chapel Hill, NC, USA,
2005.

[6] G. Snook. Simplified 3D Movement and Pathfinding Using Naviga-
tion Meshes. In M. DeLoura, editor, Game Programming Gems, pages
288–304. Charles River Media, 2000.

[7] F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe. Estimation
of Detection Thresholds for Redirected Walking Thechniques. IEEE
TVCG, 16(1):17–27, 2010.

[8] P. Tozour. In S. Rabin, editor, AI Game Programming Wisdom, pages
171–185.

[9] P. Tozour. Search space representations. AI Game Programming Wis-
dom, 2(1):85–102, 2003.

[10] M. a. Zmuda, J. L. Wonser, E. R. Bachmann, and E. Hodgson. Opti-
mizing constrained-environment redirected walking instructions using
search techniques. IEEE Transactions on Visualization and Computer
Graphics, 19(11):1872–1884, 2013.

66

