
Dynamic Omnidirectional Texture Synthesis
for Photorealistic Virtual Content Creation

Chih-Fan Chen*

Institute for Creative Technologies, University of Southern California
Evan Suma Rosenberg†

University of Minnesota

ABSTRACT

We present a dynamic omnidirectional texture synthesis (DOTS)
approach for generating real-time virtual reality content captured
using a consumer-grade RGB-D camera. Compared to a single fixed-
viewpoint color map, view-dependent texture mapping (VDTM)
techniques can reproduce finer detail and replicate dynamic light-
ing effects that become especially noticeable with head tracking in
virtual reality. However, VDTM is very sensitive to errors such as
missing data or inaccurate camera pose estimation, both of which are
commonplace for objects captured using consumer-grade RGB-D
cameras. To overcome these limitations, our proposed optimization
can synthesize a high resolution view-dependent texture map for
any virtual camera location. Synthetic textures are generated by
uniformly sampling a spherical virtual camera set surrounding the
virtual object, thereby enabling efficient real-time rendering for all
potential viewing directions.

Keywords: virtual reality, view-dependent texture mapping, virtual
content creation.

Index Terms: Computing methodologies—Computer Graphics—
Graphics systems and interfaces—Virtual reality; Comput-
ing methodologies—Computing graphics—Image manipulation—
Appearance and texture representations; Computing methodologies—
Computer Graphics—Image manipulation—Image-based rendering

1 INTRODUCTION

Creating photorealistic virtual reality content has gained more im-
portance with the recent proliferation of head-mounted displays
(HMDs). However, manually modeling high-fidelity virtual objects
is not only difficult but also time consuming. An alternative is
to scan objects in the real world and render their digitized coun-
terparts in the virtual world. Reconstructing 3D geometry using
consumer-grade RGB-D cameras has been an extensive research
topic and many techniques have been developed [10] with promis-
ing results. However, replicating the photorealistic appearance of
reconstructed objects is still an open question. Existing methods
(e.g., [1, 21]) compute the color of each vertex by averaging the col-
ors from all captured images. Blending colors in this manner results
in lower fidelity textures that appear blurry especially for objects
with non-Lambertian surfaces (see Figures 8 and 9). Furthermore,
this approach also yields textures with fixed lighting that is baked
onto the model. These limitations become especially noticeable
when viewed in head-tracked virtual reality displays, as the surface
illumination (e.g. specular reflections) does not change appearance
based on the user’s physical movements.

To improve color fidelity, techniques such as View-Dependent
Texture Mapping (VDTM) have been introduced [4, 8, 14]. In this
approach, the texture is dynamically updated in real-time using a

*e-mail: cfchen@ict.usc.edu
†e-mail: suma@umn.edu

(a) Geometry (b) Traditional VDTM (c) Our proposed method

Figure 1: (a) The reconstructed model used for different image-based
rendering methods. (b) The key frames selected from the original
video by traditional VDTM (e.g., [4]) are not uniformly distributed
around the 3D model because they are dependent upon the camera
trajectory during object capture. Moreover, some frames may only
partially capture the target object. Thus, this leads to an irregular trian-
gulation (red) and results undesirable visual artifacts in the synthetic
novel view generated from those three images. (c) In contrast, the syn-
thetic maps generated by DOTS cover all potential viewing directions
and the triangulation is uniform, resulting in seamless view-dependent
textures.

subset of images closest to the current virtual camera position. Al-
though these methods typically result in improved visual quality, the
dynamic transition between viewpoints is potentially problematic,
especially for objects captured using consumer RGB-D cameras.
This is due to the fact that the input sequences often cover only
a limited range of viewing directions, and some frames may only
partially capture the target object. To avoid the undesired rendering
results, either controlled capturing conditions or carefully prese-
lected frames from the input sequences are essential for previous
methods. Neither solution is ideal for automating the end-to-end
capture-to-rendering process. In this paper, we propose dynamic
omnidirection texture synthesis (DOTS). The following outlines the
major contributions of this paper:

• DOTS is a novel fully automatic virtual content creation
pipeline from capture-to-rendering that supports omnidirec-
tional real-time rendering.

• DOTS computes an optimized high-resolution synthetic texture
from a set of low-resolution images with inaccurate camera
poses for any particular target viewpoint.

• DOTS is robust to unconstrained capture conditions such as
non-uniform camera trajectories, missing coverage, and partial
object views.

2 RELATED WORK

A wide variety of techniques [15,18,19] have been proposed to incor-
porate 3D representations of physical objects in virtual environments.
These methods can be categorized as image-based, model-based, or
a hybrid of the two based on the way unobserved viewpoints are
represented and visually reproduced.



Image-Based Rendering Image-Based rendering (IBR) is a
rendering method using photographs without utilizing the geometry
of an object. Light field rendering (LFR) [7, 12] can synthesize
unseen views if the number of images is sufficiently large to capture
all the reflected lights coming from an object. To obtain such an
input dataset, LFR requires a well-designed camera array or a pro-
grammable turntable. These specialized devices are very expensive
and not practical for most users. Furthermore, without a 3D model,
it is complicated to edit or interact with the content after capturing.

Model-Based Rendering On the other hand, model-based
methods use geometric models with materials such as albedo, spec-
ular map, normal map, etc., to represent an object. Color mapping
optimization [1,11,21] techniques have been developed to maximize
the color (i.e., albedo) agreement between multiple input images.
These methods produce higher visual quality for models with Lam-
bertian surfaces. However, averaging all the observed colors of a
non-Lambertian object can result in lower fidelity textures that ap-
pear blurry (see Figure 8). Moreover, fixed textures are not ideal
to represent the dynamic illumination effects of non-Lambertian
surfaces.

View-Dependent Texture Mapping View-dependent texture
mapping (VDTM) [2, 4, 8, 9, 14] is a hybrid method that combines
aspects of model-based and image-based rendering. Given a small
set of selected images, it dynamically blends the color maps from
different viewing directions to render the model’s texture at run-time.
Similar to image-based methods, VDTM can achieve more realistic
surface color and illumination effects, while simultaneously main-
taining the flexibility and interactivity of model-based approaches.
However, VDTM is very sensitive to errors such as missing data
or inaccurate camera pose estimation. Furthermore, earlier method
required manual overhead for adjusting camera poses relative to the
model [8]. In later work, structure-from-motion (SfM) and multi-
view stereo were utilized to automate this process [2, 14, 17]. SfM
estimates the camera poses and reconstructs the point clouds from
visual odometry. This photometric reconstruction highly depends
on matching the visual appearance between images, and as a result
it tends to work poorly on objects with high specularity or repeated
patterns. In contrast, RGB-D sensors (e.g., Kinect) can be used to
integrate the depth data into a voxel volume which does not require
color information [10]. However, the camera trajectories computed
while scanning objects are typically prone to error that accumulates
over time, resulting in a texture that appears blurry when mapped
onto the reconstructed 3D mesh. Several approaches have been
proposed to overcome this problem. For example, Hedman et al. [9]
used additional high-dynamic range images for rendering and the
corresponding depth information was computed from RGB-D cam-
era instead of directly used the RGB-D sequence. Chen et al. [4] used
a color mapping optimization method to further refine the computed
trajectories for better rendering quality in virtual reality. However,
previous VDTM work assumed the original images are well selected
to cover all viewing directions and the whole reconstructed object is
always in view, which is nonviable in casual scanning performed by
non-experts. In other words, the following open problems have not
been sufficiently addressed in previous work :

• Covering all potential view directions during object capture
using a hand-held RGB-D camera is non-trivial. Furthermore,
the spatial and temporal distributions of camera trajectories
are non-uniform and often inconsistent (Figure 2).

• The unconstrained camera trajectory typically results in sub-
optimal triangulation, which in turn can lead to artifacts such
as sharp color discontinuities or erroneous surface illumination
(Figures 1(green) and 7).

• The texture generated for a particular viewpoint can have large
regions of missing data when the closest images in the input

Figure 2: Visualization of a typical hand-held RGB-D capture se-
quence showing non-uniform spatial and temporal distribution. The
blue line shows the estimated trajectory from the input depth stream.
The green line shows the trajectory projected from the blue line onto
a sphere surrounding the object. Red circles indicate the position of
the selected key frames for VDTM. The spatial regions covered by the
camera’s trajectory are shown in the upper right image. Time spent in
each region is displayed in the lower left image with brighter shades
indicating longer duration.

sequence contain only partial views of the captured object.
(Figures 1(blue) and 9).

We developed DOTS in order to overcome all three of the above
limitations, which are crucial but were not considered in the previous
VDTM methods [4, 9, 14]. The proposed approach can generate a
set of complete synthetic texture maps for omnidirectional viewing,
and is reasonably robust to inconsistent camera trajectories, partial
views, and missing coverage during object capture.

3 OVERVIEW AND PREPROCESSING

Overall Process The system pipeline is shown in Figure 3.
Given an RGB-D video sequence, the geometry is first reconstructed
from the original depth stream. A set of key frames is selected from
the entire color stream, and the camera poses are optimized using
the color information. Next, a virtual sphere is defined to cover the
entire 3D model and the virtual camera poses are uniformly sampled
and triangulated on the sphere’s surface (Sec. 4.1). For each virtual
camera pose, the corresponding texture is synthesized from several
local frames and the pre-generated global texture (Sec. 4.5). At run-
time, the user viewpoint provided by a head-tracked virtual reality
display is used for selecting the synthetic maps to render the model
in real-time (Sec. 4.6).

Geometry Reconstruction Any 3D reconstruction method
can be used to obtain the geometry model with a triangular mesh
representation. Similar to other papers [1, 4, 11, 21] that focus on
the texture mapping for objects captured using handheld RGB-D
cameras, we use Kinect Fusion [10] to construct the 3D model M
from the depth sequences. The camera trajectory of the sequence is
roughly estimated (the blue line in Figure 2) and can be used for the
texture generation.

Spatial Key Frame Selection Using all frames I of the in-
put video for generating the global texture is inefficient. We chose
spatial key frame selection [4, 11, 16] to maximize the variation
of viewing angles of the 3D model (red circles in Figure 2). The
selected N key frames, G = {g1,g2, · · · ,gN} ∈ I, with initial esti-
mated camera poses, TG = {tg1 , tg2 , · · · , tgN}, are used for camera
pose optimization.

Camera Pose Optimization The raw camera poses from the
trajectory obtained by Kinect Fusion [10] are not accurate enough
for mapping the texture onto the model correctly. Therefore, we
use color mapping optimization [21] to obtain the images G and



Figure 3: Overview of the DOTS content creation pipeline. Color and
depth image streams are captured from a single RGB-D camera. The
geometry is reconstructed from depth information and is then used to
uniformly sample a set of virtual camera poses surrounding the virtual
object. For each camera pose, a synthetic texture is blended from
the global texture and local color images captured near the current
location. The synthetic textures are then used to dynamically render
the object in real-time based on the user’s current viewpoint in virtual
reality.

their optimized camera poses TG as anchor images for our synthetic
image generation.

4 SYNTHETIC TEXTURE GENERATION AND RENDERING

Our objective is to replicate a high-fidelity view-dependent model
from a given low-resolution RGBD video. To achieve this goal,
we need accurate camera poses and high-quality textures for real-
time texture mapping. Instead of selecting VGA resolution images
directly from the original video, we set virtual cameras surrounding
the reconstructed geometry in 3D and generate the synthetic texture
for each virtual camera.

4.1 Sampling Virtual Camera
We uniformly sample virtual cameras surrounding the reconstructed
geometry in 3D and set the size of the sphere, formed by the virtual
cameras, large enough to cover the entire object in each synthesized
virtual view. The sphere radius used in each virtual object is reported
in Table 1. Note that unlike spatial and temporal key frame selection,
the number of synthesized textures is independent of the length
of input video and the camera trajectory. As shown in Figure 2,
we sampled 162 virtual cameras V = {v1,v2, · · · ,v162} with known
virtual camera poses Tv = {tv1 , tv2 , · · · , tv162} forming a total of 320
triangles to guarantee the angle between any viewing direction and
its closest virtual camera is always smaller than 15◦. Although the
number of synthesized textures is 1.5 times larger than the number
used in VDTM (see Table 1), DOTS covers all viewing directions,
while VDTM covers only 18 % - 20 % of the entire sphere (e.g, the
vertices on the sphere versus the red circles in Figure 2).

4.2 Weighting Function
For each virtual camera v j with known camera pose tv j , we aim to
generate one higher resolution texture s j from several low-resolution
frames. Unlike the method in [13], which assumes the camera
poses of each frame is fixed, our objective function also optimizes
the camera poses. To generate s j, all images I from the original
sequence are weighted and sorted based on their uniqueness with
respect to v j . The uniqueness is determined by the texture quality of
each image from the original video and the similarity of the camera
pose of each image with the virtual camera pose tv j . The blurriness
metric from Crete et al [6] is used to evaluate the image quality. The
distance and the angle between the camera of each frame with v j

are used for similarity evaluation. The overall weighting function of
each image i ∈ I with respect to the virtual camera v j is defined as
follows:

w j(i) = max(
cosθi ∗bi

d2
i

,δ ) ∀i ∈ I (1)

where θi and di are the angle and the euclidean distance between
the camera pose of image i and the virtual camera pose tv j and bi
represents the blurriness of image i. δ is a small number to prevent
a non-positive value if θi is larger than 90◦. In our case, we set
δ = 10−3. Images with higher weights are chosen for optimization.

4.3 Local Texture Generation
For each virtual camera v j ∈V , we sorted the weights and selected
a set of images L j with highest weights from the original sequence,
where L j = {l1, l2, · · · , lK} ∈ I with initial estimated camera poses
TL j = {tl1 , tl2 , · · · , tlK}. We set K = 20 in our work.

Because generating each synthetic texture is independent, we
simplify the notation by re-annotating {v j,L j,Tj,w j} to {v,L,T,w}
respectively. We aim to simultaneously optimize the camera poses
TL and the synthetic texture s by minimizing the error between s
and every local texture generated from image l ∈ L using texture
synthesis function Ψ (e.g., the two green rectangles in Figure 4 (a)).
Thus, the error function is defined as follows:

E(TL,s) = ∑
l∈L

w′l ∗ ∑
x∈Xl

(s(x)−Ψ(il , tl ,M, ts,x))2 (2)

where Ψ renders the model M by image i and projects the ren-
dered model to a known camera pose t j. Xl are the set of vertices
that are visible in both virtual view and the camera view of l, and
w′l = w(l)/∑l∈L w(l) are the normalized weights of each image in
L.

4.4 Global Texture Generation
As shown in Figure 4 (b), using only the local texture is insufficient
for the entire model because the closest images may have only
a partial view of the object. Thus, the selected key frames G in
Section 3 is used to fill the missing information. The corresponding
global texture of each key frame can be generated using Ψ. We
then introduce a weighted global texture to our objective function,
but keep TG unchanged since it is already optimized. By fixing the
camera poses TG, Ψ can be further reduced to a global texture hg
with respect to the virtual camera pose ts. The error function of
global texture can be written as follows:

EG(s) = ∑
g∈G

w′g ∗ ∑
x∈Xg

(s(x)−hg(x))2 (3)

Where w′g = w(g)/∑g∈G w(g) and hg is the global texture ren-
dered from image g ∈ G. Two examples of global texture are shown
in the red rectangles of Figure 4 (a).

4.5 Synthetic Texture Generation
To combine the global and local error function, λ defines the weights
of the global texture term. Eq. 2 can be rewritten as follows:

E(TL,s) = EL +λ ∗EG

=∑
l∈L

w′′l ∗ ∑
x∈Xl

(s(x)−Ψ(il , tl ,M, ts,x))2

+λ ∑
g∈G

w′′g ∗ ∑
x∈Xg

(s(x)−hg(x))2

(4)

where w′′l = w(l)/(∑l∈L w(l) + λ ∑g∈G w(g)), w′′g =

w(g)/(∑l∈L w(l)+λ ∑g∈G w(g)).



Note that to avoid re-estimating the camera poses of the global
texture, they are excluded from the selection of local textures. The
objective function is not a linear least square function because of the
texture synthesis function Ψ, thus the optimization process iteratively
minimized the error function with respect to each tl ∈ TL and s. Note
that the weights of the global textures are comparatively smaller than
the weights of local textures. We further decrease it by setting λ to
0.1. The regions covered by local texture will not be affected much,
but the uncovered area with the missing texture can be filled in with
the weighted global texture. As shown in Figure 4 (c), the optimized
textures S not only maximize the color agreement of local textures
but also seamlessly blends the global textures. Only the derived
high-resolution synthetic textures S and the corresponding virtual
camera poses TS are used for real-time image-based rendering.

(a) overview of texture blending

(b) local texture only (c) local and global textures

Figure 4: (a) The synthetic texture is blended from the local texture
(green rectangle) and the global texture (red rectangle). (b) It was not
possible to completely cover the entire 3D model using only the local
texture information. (c) By blending with the global texture, complete
coverage is obtained.

Choice of Texture Resolution In DOTS, there is no constrain
on the resolution of synthetic texture and can be set to any arbitrary
positive number. We set the resolution as 2048×2048, which has
two advantages. First, by blending several VGA resolution (640×
480) images with VGA, our method achieves higher resolution. A
comparison of VGA resolution versus high resolution is shown in
Figure 5. The resolution of the blue rectangle of the synthetic texture
is approximately 2 times that of the red rectangle of the original
image. Second, to achieve better performance, most game engines
and graphics APIs require the texture resolution to be power-of-two.
Thus, when importing the texture, the selected frames from original
video are either being stretched or padded to fulfill the requirement,
while the generated synthetic textures remain the same.

4.6 Real-time Image-based Rendering
At run-time, the HMD pose is provided by the Oculus Rift CV1
and two external Oculus Sensors. The traditional VDTM method
computes the euclidean distance between the user’s head position
and all camera poses and then selects the closest images for render-
ing. In contrast, DOTS systematically samples all spherical virtual
camera poses surrounding the virtual object. Thus, the vector from
the center of the model to the HMD position only intersects with one

Figure 5: Comparison of an input image captured from the RGB-D
camera (left) with a high-resolution synthetic texture generated using
the proposed method (right).

Figure 6: Three virtual objects used for comparison.

triangle mesh of the virtual sphere surrounding the model (e.g., Fig-
ure 1(c) bottom-left). Barycentric coordinates are used to compute
the weight and blend the color from the three synthesized textures
{s1,s2,s3} of the intersected triangle to generate the novel view.

5 RESULTS

5.1 Data Sets
The dataset [5] contains thousands of RGB-D sequences captured by
Primesense. The raw color and depth are not synchronized, so we
assigned the color images to the depth images with the smallest time-
stamp difference. Since the streams are both 30 fps, the shifting error
is small and can also be handled by the camera pose optimization.
We tested our system with three different models: Torso of Elevation,
the Kiss by Rodin, and an antique leather chair (corresponding
to IDs 3887, 4252 and 5989 in the database respectively). The
detail of each object is shown at Table 1 and some example images
are shown in Figure 6. The vertex and surface is reconstructed
using KinectFusion [10], and the key frames are selected from the
color/depth stream. The decimated model of the sculpture is used in
the second row of Figure 8.

5.2 Visual Analysis
Although there are many proposed VDTM methods such as [2,9,14]
or other IBR methods [3, 20] can achieve real-time in AR, the frame
rate is still much slower than the required frame rate (i.e., 90 fps)
for real-time VR applications. To ensure a realistic and comfort-
able experience in VR, we compare our DOTS with a previous
VDTM [4] approach that can both render the model in under 8
milliseconds (i.e., more than 125 fps). In Figure 1, DOTS systemat-
ically sampled spherical virtual camera set surrounding the target
object, while the selected key frames in VDTM are unstructured.
For both methods, three images from the highlighted triangles are
used to render the model. Because the selected virtual cameras for

Object vertex surface key frames color/depth
Torso of 208K 406K 101 3210 / 3225
elevation
(decimated) 1.3K 2.5K
The Kiss 280K 544K 116 3989 / 4007
Chair 255K 495K 98 3299 / 3313

Table 1: Information about the 3D models and images used in different
examples.



DOTS have similar viewing directions, the viewpoint generated by
blending the three corresponding synthetic textures exhibits fewer
artifacts compared to VDTM, which uses the three closest images
from original capture sequence. Moreover, the synthetic textures
provide omnidirectional coverage of the virtual object, while the
selected key frames in VDTM sometimes only partially capture the
target object. Because of this missing texture information, VDTM
can only synthesize a partial unobserved view, thereby resulting in
sharp texture discontinuities (i.e. seams), while DOTS can render
the model with such artifacts. Similar observations can be made
among all four virtual objects. As shown in Figure 9, the fixed
texture method (red rectangle) results in a lower fidelity (blurry)
appearance. Although the model rendered using VDTM can achieve
a more photorealistic visual appearance (leftmost in blue rectangle)
than fixed texture method, the region of high-fidelity viewpoints is
limited. Due to the unconstrained capture process, this region varies
between different objects and is highly dependent on the specific
motions of the hand-held RGB-D camera. Texture defects and un-
natural changes between viewpoints are not pleasant during virtual
reality experiences where user freedom is encouraged and the view
direction cannot be predicted in advance. However, in contrast to
VDTM, DOTS generates omnidirectional synthetic textures that
produce visually reasonable results even under such conditions.

It is worth noting that DOTS can generate good appearance even if
the HMD position is significant deviates from the captured trajectory,
while VDTM results unnatural specularity highlights and noticeable
artifacts. For example, the top views of three different objects
rendered by VDTM (Figure 7 left) have severe artifacts because there
is a lack of data around the HMD position, the closest images of
VDTM are selected from far away in both distance and the viewing
angle. The texture used to render the female sculpture comes from
both front views and side views, resulting in inconsistent highlights
on the shoulder and the chest. Several texture edges on the base
of The Kiss and the back of the chair is observed because of the
unstructured triangulation.

(a) Traditional VDTM [4] (b) DOTS

Figure 7: Rendering results from viewpoints that were not covered
during object capture (e.g. a top-down view of the virtual objects).
(a) The model is rendered incorrectly by VDTM. For example, the
specularity highlights on the female sculpture’s shoulder and chest
are conflicting with each other. Blending textures from distant camera
poses results in noticeable color discontinuity on the base of The
Kiss and the back of the chair. (b) The model rendered by DOTS
presents reasonable visual quality even though the viewpoint was
never observed in the capture sequence.

In Figure 8, we decimated the reconstructed female sculpture from
208K vertices to 1.3K vertices (i.e., 0.6% of the original). The visual
fidelity of the model decreased dramatically when rendered using
the fixed texture. The texture mapping failed for VDTM, resulting
in extremely undesirable artifacts. However, when rendered using
DOTS, the reduced polygon mesh retained a high-fidelity appearance
that was nearly indistinguishable from the original model.

Figure 8: (top) A 3D model rendered using per-vertex color. (bottom)
A reduced polygon mesh rendered using a UV map. From left to right:
the untextured geometric model, fixed texture mapping [21], VDTM [4],
and DOTS.

5.3 Time and Space Complexity Comparison

The time complexity of VDTM (i.e., the camera pose optimization)
is O(vN), where v is the vertex number and N is the number of
key frames. For each synthetic view generation, it takes additional
computation O(vK), where K is the selected local images. In our
experiments, it takes 2 to 3 hours for camera pose optimization
and another 2 to 3 hours to generate all 162 synthetic textures on
a Macbook Pro with an Intel i7-4850HQ CPU, Nvidia GeForce
GT750M GPU and 16 GB of RAM. The space complexity for
VDTM is based on the number of key frames, while the complexity
for DOTS is based on the desired resolution of the synthetic texture
and the number of synthetic views.

6 CONCLUSION AND FUTURE WORK

We present dynamic omnidirectional texture synthesis (DOTS), a
novel approach for rendering virtual reality content captured using
a consumer-grade RGB-D camera. The proposed objective func-
tion is used to generate optimized synthetic textures for real-time
free-viewpoint rendering. The capture-to-rendering process is fully
automated and does not require any expert knowledge or human
effort. Visual comparison confirmed that DOTS can handle more
extreme cases such as viewing perspectives that were not directly
covered during object capture.

Limitations and Future Work Due to the nature of image-
based rendering techniques, real world illumination is baked into the
texture. During object capture, a controlled lighting environment
and fixed white balance and exposure of the camera is expected. An-
other limitation is synthesizing accurate specular reflections. Since
specular reflections have a strong non-local effect and are strongly
related to the geometry and lighting conditions, the synthetic views
created from interpolating between color images may have visual
artifacts. However, this limitation exists in all image-based rendering
methods and is beyond the scope of this paper. In order to estimate
the surface illumination properties of the reconstructed virtual object,
we plan to investigate methods for separating the texture into diffuse
and specular maps. Furthermore, replacing the uniform sampling
with an adaptive sampling algorithm based on either the geometry
of the object or the area of interest (e.g., sampling more virtual
cameras in front of the reconstructed object) could further improve
the transition smoothness.



Figure 9: Appearance comparison results for each virtual object used in our paper. The top row shows three example images from original video.
The second row are the geometry model and the results from VDTM [4] (in blue rectangle). Note that although VDTM can achieve good visual
quality (lesfmost), the region of high-fidelity viewpoints is limited. The third row is the fixed texture [21] (in red rectangle) and the results of DOTS
(in green rectangle). In contrast to VDTM, DOTS generates omnidirectional synthetic texture maps that produce visually reasonable results.

ACKNOWLEDGMENTS

This work is sponsored by the U.S. Army Research Laboratory
(ARL) under contract number W911NF-14-D-0005. Statements
and opinions expressed and content included do not necessarily
reflect the position or the policy of the Government, and no official
endorsement should be inferred.

REFERENCES

[1] S. Bi, N. K. Kalantari, and R. Ramamoorthi. Patch-based optimization
for image-based texture mapping. ACM Trans. Graph., 36(4):106:1–
106:11, jul 2017. doi: 10.1145/3072959.3073610

[2] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen. Un-
structured lumigraph rendering. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’01, pp. 425–432. ACM, New York, NY, USA, 2001. doi: 10.
1145/383259.383309

[3] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis.
Depth synthesis and local warps for plausible image-based navigation.
ACM Trans. Graph., 32(3):30:1–30:12, jul 2013. doi: 10.1145/2487228
.2487238

[4] C. F. Chen, M. Bolas, and E. S. Rosenberg. View-dependent virtual
reality content from rgb-d images. In 2017 IEEE International Confer-
ence on Image Processing (ICIP), pp. 2931–2935, Sept 2017. doi: 10.
1109/ICIP.2017.8296819

[5] S. Choi, Q.-Y. Zhou, S. Miller, and V. Koltun. A large dataset of object
scans. arXiv:1602.02481, 2016.

[6] F. Crete, T. Dolmiere, P. Ladret, and M. Nicolas. The blur effect:
perception and estimation with a new no-reference perceptual blur
metric. Proc. SPIE, 6492:64920I–64920I–11, 2007. doi: 10.1117/12.
702790

[7] A. Davis, M. Levoy, and F. Durand. Unstructured light fields. Comput.
Graph. Forum, 31(2pt1):305–314, may 2012. doi: 10.1111/j.1467
-8659.2012.03009.x

[8] P. Debevec, Y. Yu, and G. Boshokov. Efficient view-dependent image-
based rendering with projective texture-mapping. Technical report,
University of California at Berkeley, Berkeley, CA, USA, 1998.

[9] P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow. Scalable inside-
out image-based rendering. ACM Trans. Graph., 35(6):231:1–231:11,
nov 2016. doi: 10.1145/2980179.2982420

[10] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.
Kinectfusion: Real-time 3d reconstruction and interaction using a mov-
ing depth camera. In Proceedings of the 24th Annual ACM Symposium

on User Interface Software and Technology, UIST ’11, pp. 559–568.
ACM, New York, NY, USA, 2011. doi: 10.1145/2047196.2047270

[11] J. Jeon, Y. Jung, H. Kim, and S. Lee. Texture map generation for 3d
reconstructed scenes. The Visual Computer, 32(6):955–965, Jun 2016.
doi: 10.1007/s00371-016-1249-5

[12] M. Levoy and P. Hanrahan. Light field rendering. In Proceedings of
the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’96, pp. 31–42. ACM, New York, NY, USA,
1996.

[13] R. Maier, J. Stckler, and D. Cremers. Super-resolution keyframe fusion
for 3d modeling with high-quality textures. In International Conference
on 3D Vision, pp. 536–544, Oct 2015. doi: 10.1109/3DV.2015.66

[14] Y. Nakashima, F. Okura, N. Kawai, H. Kawasaki, A. Blanco, and
K. Ikeuchi. Realtime novel view synthesis with eigen-texture regres-
sion. Proceedings of British Machine Vision Conference), 2017.

[15] F. Remondino and S. El-Hakim. Image-based 3d modelling: A review.
The Photogrammetric Record, 21(115):269–291, 2006. doi: 10.1111/j.
1477-9730.2006.00383.x

[16] T. Richter-Trummer, D. Kalkofen, J. Park, and D. Schmalstieg. Instant
mixed reality lighting from casual scanning. In IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 27–36, Sept
2016. doi: 10.1109/ISMAR.2016.18

[17] T. Rongsirigul, Y. Nakashima, T. Sato, and N. Yokoya. Novel view
synthesis with light-weight view-dependent texture mapping for a
stereoscopic hmd. In 2017 IEEE International Conference on Multime-
dia and Expo (ICME), pp. 703–708, July 2017. doi: 10.1109/ICME.
2017.8019417

[18] H. Shum and S. B. Kang. A review of image-based rendering tech-
niques. Proceedings of IEEE/SPIE Visual Communications and Image
Processing (VCIP), 4067:2–13, 2000. doi: 10.1117/12.386541

[19] M. Waechter, M. Beljan, S. Fuhrmann, N. Moehrle, J. Kopf, and
M. Goesele. Virtual rephotography: Novel view prediction error for 3d
reconstruction. ACM Trans. Graph., 36(1):8:1–8:11, Jan 2017. doi: 10.
1145/2999533

[20] D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. H.
Salesin, and W. Stuetzle. Surface light fields for 3d photography.
In Proceedings of the 27th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’00, pp. 287–296. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000. doi:
10.1145/344779.344925

[21] Q.-Y. Zhou and V. Koltun. Color map optimization for 3d reconstruc-
tion with consumer depth cameras. ACM Trans. Graph., 33(4):155:1–
155:10, July 2014. doi: 10.1145/2601097.2601134


