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Figure 1: We present a system whereby a human subject can be efficiently captured and simulated as a 3D avatar. We present a study where
we ask subjects to judge which performance better resembles the person depicted in the avatar.

Abstract

Recent advances in scanning technology have enabled the
widespread capture of 3D character models based on human sub-
jects. However, in order to generate a recognizable 3D avatar, the
movement and behavior of the human subject should be captured
and replicated as well. We present a method of generating a 3D
model from a scan, as well as a method to incorporate a subjects
style of gesturing into a 3D character. We present a study which
shows that 3D characters that used the gestural style as their origi-
nal human subjects were more recognizable as the original subject
than those that don’t.
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1 Introduction

Recent advances in scanning technology have enabled the rapid cre-
ation of 3D characters from human subjects using image, video and
depth sensing cameras. The fidelity of such static 3D models can
vary based on the scanning equipment, lighting, method and the
manual processes used to generate and refine the model. However,
the efficiency of the capture process and the detail that can be ac-
quired from such a process makes it appealling to 3D content pro-
ducers. By contrast, traditional 3D construction of a static character
model through manual means can take days, weeks, or longer in or-
der to generate approximations or stylizations of a human subject.
Such efficiency in scanning and 3D model creation opens the pos-
sibility of efficiently creating large numbers of 3D characters with
appearances as varied as the population used as subjects for the
capture. For example, a large crowd scene can be populated with a
population of 3D characters generated from scanned data.

Another use of 3D characters models is to act as a representation
of the human capture subject in a simulation, i.e as an avatar. In
such cases, it is important for the human simulation user to be able
to recognize the 3D characters in the simulation. As an example,
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a military training simulation might require a user to run practice
drills with virtual squad members that look like the real squad mem-
bers. Alternatively, a training simulation might require the presence
of coworkers to be part of the 3D training environment. All of these
uses require that a 3D character be a recognizable representation
of the original human subject. There is also a growing body of
research related to the the psychological effects of seeing yourself
within a simulation [Bailenson 2012; Fox and Bailenson 2009; Fox
and Bailenson 2010; Lee et al. 2010] and examining a person’s pref-
erences for gestural style on agents as it relates to their own gestural
style [Luo et al. 2013].

Avatars can be identified as representations of their human counter-
parts through many modalities, such as through visual inspection
of their static or moving 3D image, or through recognition of their
voices. However, under prolonged exposure to a 3D avatar in a
simulation, we examine whether the behavior and movement of an
avatar also contributes to the recognition or the immersion into a
simulation that includes such an avatar. Early work has shown that
people can recognize others based on their movements [Cutting and
Kozlowski 1977], are more sensitive to their friend’s movements
that to stranger’s [Loula et al. 2005]. In this paper, we show a
framework by which we can efficiently capture both the visual ap-
pearance of a human subject and the gestural style. We perform
a study that shows that observers found the 3D avatar performance
that used the same gestures as the original human subject were rated
as ’more like’ the original human subject by groups that knew that
subject, than 3D avatars that performed using another human sub-
ject’s gestures.

2 Related Work

In this paper, we describe a framework for the efficient capture and
synthesis of a 3D avatar from a human subject. Our framework
consists of stages of 3D model acquisition, 3D character rigging,
motion capture and gesture synthesis.

2.1 Avatar Capture and Creation

Creating a virtual character from a particular subject is not a trivial
task and usually requires extensive work from a 3D artist to model,
rig, and animate the virtual character.

The first step of avatar creation requires reconstruction of a 3D
model from either a set of images or depth range scans. With the
availability of low-cost 3D cameras (Kinect and Primesense), many
inexpensive solutions for 3D human shape acquisition have been
proposed. The work by [Tong et al. 2012] employs three Kinect
devices and a turntable. Multiple shots are taken and all frames are
registered using the Embedded Deformation Model [Sumner et al.
2007]. The work done in [Zeng et al. 2013] utilizes two Kinect sen-
sors in front of the self-turning subject. The subject stops at sev-
eral key poses and the captured frame is used to update the online
model.

More recently, solutions which utilize only a single 3D sensor have
been proposed, and this allows for home-based scanning and appli-
cations. The work in [Wang et al. 2012] asks the subject to turn
in front of a fixed 3D sensor and 4 key poses are uniformly sam-
pled to perform shape reconstruction. To improve the resolution,
KinectAvatar [Cui et al. 2013] considers color constraints among
consecutive frames for super-resolution. More recently, the work
in [Li et al. 2013] asks the subject to come closer and obtains a
super-resolution scan at each of 8 key poses.

The second step is to create an animated virtual character from the
scanned 3D human model. A 3D model needs to be rigged with

a skeleton hierarchy and appropriate skinning weights. Tradition-
ally, this process needs to be done manually and is time consuming
even for an experienced animator. An automatic skinning method
is proposed in [Baran and Popović 2007] to reduce the manual ef-
forts of rigging a 3D model. The method produces reasonable re-
sults but requires a connected and watertight mesh to work. The
method proposed by [Bharaj et al. 2011] complements the previ-
ous work by automatically skinning a multi-component mesh. It
works by detecting the boundaries between disconnected compo-
nents to find potential joints. Such a method is suitable for rigging
the mechanical characters that consists of many components. Other
rigging algorithms can include manual annotation to identify im-
portant structures such as wrists, knees and neck [Mix 2013].

In the last few years, video-based methods have enabled the capture
and reconstruction of human motions as a sequence of 3D mod-
els [Starck and Hilton 2007]. Such methods, which are capable of
reproducing surface and appearance details over time, have been
used to synthesize animations by the combination of a set of mesh
sequences [Casas et al. 2014]. This results in a novel motion that
preserves both the captured appearance and actor style, without the
need of a rigging step. However, current approaches only demon-
strate successful results for basic locomotion motions such as walk,
jog and jump. The complexity of the gesture motions needed in this
work would still require the video-based 3D models to be rigged.

2.2 Gesture Synthesis

In this work, we seek to reproduce a human subject’s gestural style
onto its 3D avatar. This can be achieved through traditional motion
capture and transfer means via retargeting [Gleicher 1998]. How-
ever, a general synthesis technique is needed in order to generate
motions for unrecorded performances. For the work in this pa-
per, it is also important that synthesized motions are faithful to the
styles of the scanned subject. Previous works exists for synthesiz-
ing novel gesture motions from speech input. [Stone et al. 2004]
used mocap segments that correspond to pre-recorded phrases and
rearrange them to match the new sentences. [Levine et al. 2009]
uses prosody-based features extracted from audio to train hidden
Markov Models to generate appropriate gesture. Motion is real-
ized using segmented motion captured gesture. [Levine et al. 2010]
performed realtime generation of gestures including word spotting
(you, me). Since the gesture selection is based on similarity instead
of the semantics, the resulting gestures are not likely to match the
semantic content of the speech.

The work in [Neff et al. 2008] annotates and profiles the gesture
styles of a particular speaker from video recording. The gesture mo-
tions are then synthesized procedurally using heuristic and inverse
kinematics from speech input. The method can produce highly cor-
related gestures to that particular speaker. However, due to the
fact that the synthesis algorithm is procedural, the resulting mo-
tions usually are not as natural as the motions generated by example
based methods.

More recently, the work in [Marsella et al. 2013] uses a rule-based
method to infer suitable gesture labels from speech input. A corre-
sponding motion are then synthesized by concatenating gesture seg-
ments from the database. Gesture hold and co-articulation are han-
dled by blending adjacent segments and adding post-stroke holds.
Although the method produces promising results, it requires signif-
icant setup of appropriate gesture motions for the gesture database.

3 3D Avatar Synthesis

We used the method proposed in [Shapiro et al. 2014] to obtain an
articulated 3D character from the test subject. The process requires
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the subject turns in front of the Kinect, while remaining static for
four key poses. For each key pose, a super-resolution scan is cre-
ated from its corresponding view. The resulting four scans are then
aligned and merged through both rigid and articulated alignment to
register all scans. The final static geometry is then produced via
Poisson mesh reconstruction. The texture information is also in-
ferred from the four individual scans via Poisson texture blending.
The body scanning capture takes approximately 4 minutes. Due
to the lack of facial detail obtained from the body scan, a separate
face scan using [Hernandez et al. 2012] is used to produce a 3D face
model, which is then stitched onto the avatar body, replacing that
area generated during the body scan (Figure 2). Since the body scan
is also not able to distinguish individual fingers, 3D hands from a
female 3D model where used to replace the hands of the avatar from
the body scan. Note that our motion capture process does not pre-
serve finger motion. The facial scan takes only a few minutes to
scan and generate, but the changes to the geometry and textures of
the 3D model require manual artist intervention.

Figure 2: High fidelity face scan that replaces the face from the
avatar body scan.

The scanned character model requires proper rigging structure in
order to produce movements. The method automatically builds
and adapts a skeleton to the 3D scanned character. Thus, it can
transfer the gesture motions onto the scanned character via motion
retargeting. The auto-rigging method is a variation to the one pro-
posed in [Baran and Popović 2007] by building a distance field from
the mesh and using the approximate medial surface to extract the
skeletal graph. The difference is that instead of requiring a water-
tight mesh, the method uses voxel representation to build distance
fields. Thus the skeleton extraction process would be more robust
on meshes with topological artifacts and also make the processing
time independent of the mesh resolution.

Once the skinned avatar is created, the captured gesture motions can
then be applied to the character via motion retargeting. We use the
on-line retargeting method proposed in [Feng et al. 2014] to transfer
the motion. The retargeting is done by converting the joint angles
encoded in a motion from a source skeleton associated with the
gesture motions to the target skeleton from the scanned avatar. To
encode the discrepancy between two skeletons, each bone segment
in target skeleton is rotated to match the global direction of that
segment in source skeleton at default pose. Once the default pose
is matched, we address the discrepancy between their local frames
by adding suitable pre-rotation and post-rotation at each joint. By
combining these alignment rotations and pre/post-rotations, a suit-
able new offset rotation can be found to compensate for the differ-
ence between two skeletons. Thus at run-time, this offset rotation
can be used to convert joint angles from source skeleton onto target
skeleton.

4 Gesture Motion Synthesis

We believe that the movements of a person, in a addition to his
appearance, play an important part on the effectiveness and recog-
nizability of his scanned avatar. Thus an important stage of our

pipeline is to recreate the movement styles of the scanned subject.
This requires a method that takes some example performance of
a person, and then synthesize new motions that reproduce similar
movement styles.

We used the method from [Chiu and Marsella 2014] to generate
the novel gesture motions from a new speech utterance. Given a
motion capture sequence of gesture animations, the method utilizes
gaussian process latent variable models (GPLVMs) to learn a low-
dimensional embedding that encodes the gesture motions. To gen-
erate new gesture motions from speech input, the method first maps
the speech into gesture labels from a speech-annotation mapping
learned using conditional random field (CRF). Then the synthesis
process selects the corresponding gesture segments that match the
gesture labels from low-dimensional space and concatenate them
together to form a gesture motion for the speech. Finally, the dis-
continuity between gesture segments are interpolated by inferring a
smooth trajectory inside the low dimensional space.

The advantage of the method is that it separates the gesture label
inference from animation synthesis, and thus the two learning tasks
can be solved individually with different datasets. This allows us
to easily use the gesture motion from a particular individual to as
input motions to specifically encode his gesture styles. Since the
method does not require the input motion to be a structured set of
gestures, the raw captured gesture motions can be readily used as
input to build the GPLVM without further processing. Thus the
synthesis method fits well with our rapid avatar capture pipeline to
further obtain and inject the styles of movements onto the captured
avatars.

Figure 3: Performance capture of the actress using markerless mo-
tion capture. Additional head and wrist sensors are added to sup-
plement the
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To produce the input motion data of a specific individual for
GPLVMs, we need to capture the gesture performance from that
subject. A low cost motion capture system from iPiSoft [iPiSoft ]
is used to rapidly capture the gesture motions of our subjects. The
system utilizes a single depth sensor such as Microsoft Kinect to
capture a point cloud sequence and the character animation is in-
ferred by fitting a skinned actor to the point clouds. Head and wrist
rotations are also recorded by attaching inertial sensors on subjects’
hands and head. Thus the resulting motions contain the full-body
movements as well as head nods and wrist rotations. We ask the
subjects to speak naturally in front of the capture system for about
5 minutes to record their gesture performance while speaking. Fig-
ure 3 shows some example snapshots of the actress gesturing during
motion capture. The captured motion is then used as the input for
gesture synthesis.

5 Evaluation

We conducted a test to examine whether participants identify a 3D
avatar as being more like the actor who inspired the avatar if it ges-
tures like that actor rather than a different actor.

5.1 Evaluation study

For this study, we modeled avatars after two different amateur ac-
tresses to test the possibility that people would identify their avatars
as being more like them to the extent that that avatar’s gestures were
patterned after that actress’s own gestures (rather than the other ac-
tress’s gestures). All participants in the study knew one or both
of the actresses. Specifically, 29 participants who knew amateur
actress A and 41 participants who knew amateur actress B volun-
teered to complete the study for no compensation.

Participants in this study who knew actress A viewed two short
videos (about a minute each) of actress A’s avatar: one with gestures
recorded from actress A, and another one with gestures recorded
from actress B (Figure 4). After the first video, participants were
asked how much is the avatar like this actress, to which they re-
sponded on a scale from 1 (not very much like this actress) to 7
(very much like this actress). After the second video, participants
answered this same question again, and then were also asked to
choose which avatar was more like the actress.

Likewise, those in this study who knew actress B viewed two videos
of her avatar: one with gestures recorded from actress A, and an-
other one with gestures recorded from actress B. They answered the
same set of questions, but in reference to actress B.

5.2 Results

We conducted a Wilcoxon [Wilcoxon 1945] signed ranks test to
determine whether participants reported that actress A’s avatar was
more like actress A when it gestured like actress A or like actress
B. This analysis confirmed that participants who new actress A re-
ported that her avatar seemed ’more like her’ when it gestured like
actress A (Median = 5.00, IQR = 4.00-6.00) than when it gestured
like actress B (Median = 3.00, IQR = 1.00-5.00, Z = -3.49, p ¡
.001). A χ

2 goodness of fit test also revealed that, when given a
forced-choice, these participants were also marginally more likely
than chance to choose the avatar that had matching gestures as be-
ing like actress A than to choose the avatar with actress B’s gestures
(19 vs 9, χ2 (1) = 3.57, p = .059).

Among participants who knew actress B, we find comparable re-
sults for her avatar. Participants reported that the avatar was ’more
like her’ when it gestured like actress B (Median = 5.00, IQR =

Figure 4: 3D avatars captured with gestures synthesized by our
system. Each avatar performance is synthesized with the original
subject’s gestures and with the other’s gestures.

4.00-6.00) than when it gestured like actress A (Median = 3.00,
IQR = 1.50-4.50, Z = -3.13, p = .002).
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Figure 5: Study results showing whether participants reported that
actress A’s avatar was more like actress A when it gestured like
actress A or like actress B, and vice-versa.

Further evidence also confirms that participants should be able to
identify an avatar as being more like the actor who inspired the
avatar if it gestures like the actor rather than a different actor.

6 Discussion

We present a framework for capturing and simulating a 3D avatar
of a human subject using their own body gesturing style. There are
several limitations to the fidelity and capability of 3D avatars, in-
cluding a lack of facial movement or expression, as well as a lack
of finger movement. A complete gesture style would include such
elements. In addition, the 3D avatars are best suited for distance
viewing, and not for close camera angles. We also expect that any
gesture synthesis algorithm that preserved the style of the origi-
nal gestures would be suitable for the application described in this
work. Our study did not include audio; only the body movement
was to be evaluated, and not the voice.
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Figure 6: Ratings showing how actress A’s avatar was more like
actress A when it gestured like actress A or like actress B, and vice-
versa.

Results of our evaluation confirmed that viewers identify an avatar
as being more like the actor who inspired the avatar if it gestures
like that actor rather than a different actor. Specifically, we found
that when participants who knew one of our two amateur actresses
viewed videos of her avatar, the gestures that avatar performed af-
fected both ratings of the avatar and choice of which version of her
avatar was more like her. First, an actress’s avatar was rated as more
like her when it gestured like that actress than when it gestured like
the other actress. In the forced-choice, participants were also more
likely to say that the avatar that had matching gestures was more
that actress than to choose the very same avatar when it moved like
the other actress.

In sum, these results suggest that an avatar can be made to seem
more like the actor it was modeled after by adding movement to
appearance. There may be important psychological implications
of this for the user. For example, it is possible that we would en-
gage with an avatar more like we would engage with the actor if
the avatar appears more like the actor to us. This kind of trans-
ference, where we treat one agent like another agent if they seem
alike, occurs as part of social perception [Andersen et al. 1995;
Chen and Andersen 1999]. Research on transference suggests that,
when a person appears more like another person, we engage with
and treat that person as if they were the other person. For example,
if a woman were to meet someone who seems like her mother, the
woman would treat that new person like she treated her mother. Al-
though the concept has psychoanalytical roots, researchers tend to
view transference in social-cognitive terms; they would argue that
this woman’s behavior would reflect the activation and use of the
representation of her mother when encountering this new person.

Recent research on transference more directly supports the possi-
bility that gestures may help to activate and use of a representation
of a given person during the process of social perception. For ex-
ample, research on the intersection of face perception and transfer-
ence found that facial feature resemblance can elicit transference
[Kraus and Chen 2010]. When participants viewed an image of a
stranger that was manipulated to look more like his or her signif-
icant other, they treated that stranger more like they would treat
their interaction partner compared to those participants who saw
unaltered images of a stranger’s face. If gesture resemblance can
also elicit transference (like facial-feature resemblance does), it is
possible that avatars who utilize matching gestures may lead peo-
ple to engage with the avatar more like they would the actor who
inspired it.

Future research should explicitly test whether adding matching ges-
tures lead people to engage with an avatar like they would treat

the actor compared to avatars without matching gestures. Further
psychological work should also verify that these kinds of social-
cognitive mechanisms (i.e., activation of a person’s representation)
account for such engagement when avatars are considered in place
of humans. Additionally, avatars that are modeled after actors that
are trusted and liked by users, to the extent that the avatar can en-
courage users to treat them like the actor, such relational features
(i.e., trust, liking) could be enhanced. Additional research should
consider whether other forms of movement, such as locomotion,
attentive gazes, idle posturing and weight shifts would also make
the avatar seem more like the actor, potentially triggering users to
engage with the avatar more like it were the actor himself.

6.1 Potential Impact

Our findings have a potential impact for immersive training. For
example, some military groups uses VR for training teams and
squads, the members of which know each other closely as they live
and work together. In such simulations, the agents all wear similar
uniforms, helmets and equipment that makes it difficult to identify
individuals based on physical appearance, regardless of the person-
alization of the avatar in the virtual environment. However, if infus-
ing these avatars with gestures captured from each individual makes
them more uniquely recognizable, this has strong potential benefits
for team coordination and training value. Beyond the scope of this
work, we seek to understand if we can achieve more engagement
with an avatar if it more closely resembles, in both appearance and
behavior, the original actor.

This framework also gives us the opportunity to study how similar-
ities in nonverbal behavior impact interpersonal relations - such as
trust and liking. We can for example place person a’s behaviors on
an avatar of person b and see how that differentially impact attitudes
of a for b.

There is a literature that people like and trust people that look like
themselves [Bailenson et al. 2005], that people have built in cultural
preferences for things like gaze patterns and interpersonal distance.
There is less evidence for things like similar gestures. this raises the
question whether similar gestures and postures might have an im-
pact on factors like trust and liking. This could have an impact
in education and training; if trust and liking could be improved
through replication of gestural style, then training outcomes that
depend on trust and liking could likewise be impacted.
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BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and ani-
mation of 3d characters. ACM Trans. Graph. 26, 3 (July).
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