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Figure 1: Demo of our system. Bottom left: Remote view of a user in the laboratory’s tracking space. Top right: Local avatar of the user
represented in a virtual environment. Bottom center: Video feed of our application running in real time in a remote location.

ABSTRACT

This paper presents an open infrastructure for the development of
collaborative VR applications, where full body posture and gaze in-
formation is shared among participants over secured firewalls. We
describe how to leverage current technologies to handle novel re-
quirements related to logging and replay, high refresh rates, and
mobile based VR environments. Furthermore, we discuss the ratio-
nale behind the proposed solution, some limitations of this imple-
mentation, and how to compare this software architecture to similar
future implementations.
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1 INTRODUCTION

Virtual Reality (VR) is becoming mainstream as a result of the
commercial attention it has received since Kickstarter successfully
funded Oculus —subsequently acquired by Facebook— and due
to the existing quality and power of computer graphics and related
technologies. Several companies are creating compelling VR ex-
periences by means of current game engines, such as Unity and
Unreal, and their ecosystems of APIs. Given that these novel tech-
nologies offer a wide variety of solutions for almost all problems
in VR, we are particularly interested in how proven technologies
from the VR realm could be used in these novel VR experiences.
We believe this exercise could help us to understand the advantages
and shortcomings of both, novel game engines and old VR tech-
nologies, as well as determine how these technologies could be
integrated, and define a method to compare novel technologies to
existing and proven solutions.

Specifically, we are interested in developing a Collaborative VR
(CVR) infrastructure that would enable two or more users to share
a virtual reality experience while sharing their full body posture.
Each user is represented by a virtual avatar that shows the user’s
physical movements with relatively high fidelity. Such an infras-
tructure could be useful in a research environment where shared
VR interactions can be systematically studied, where the ability to
observe and control the experience is required, and where it is use-
ful to record user movements and enable playback and review af-
terwards. The key requirements for this systems are, therefore, as
follows:
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• Use of wireless technologies for user’s body tracking and dis-
play; the wireless component is particularly important to en-
able free locomotion for users

• Management of several input devices at their highest fre-
quency, specifically different types of trackers.

• Record and playback of users’ data.

• Remote collaboration between users, even behind tight fire-
wall restrictions.

Figure 1 shows a usage example of our system. While a user is
in the main lab wearing the mocap, a first screen shows the direct
output from our desktop and a second one shows our application
running in a remote lab behind a secure firewall, which is receiving
the same data as our desktop.

In this paper, we describe a solution based on Unity and VRPN,
which can be used in similar applications. We also report some ad-
vantages of this infrastructure in comparison to other approaches,
and anticipate how this approach could be compared to other solu-
tions in the future.

2 RELATED WORK

The work presented in this paper relates to systems for the study of
human behavior in groups, to the field of CVR, and to the architec-
tures for such systems. The following are some important results in
these areas.

The interest in the study of human behavior at several levels has
increased lately and has sometimes resulted in very complex sys-
tems such as [13] at one end of the spectrum. In this regard, our
proposal is relatively more economical because it builds on top of
low cost HMDs and their ever increasing capabilities.

CVR has been a subject of study for several years and a good
reference of the related issues can be found in [14]. Our work here
focuses on the issue of heterogeneity, in the sense that we want
to receive information from several trackers that work at different
frame rates, some of them higher than the display’s frame rate. We
also want to address particular issues related to managing full body
tracking data from several users.

There have been previous attempts to create full body CVRs. For
instance, the system in [3] uses a mocap system to capture a limited
number of points of interest from two users and their surroundings.
The system in [16] can follow several users, but with the line of
sight limitations of a Kinect. The prototype in [12] presents a sys-
tem for facial recognition and motion capture of two users where
they can see virtual versions of each other through a virtual portal.

Furthermore, CVR systems for the study of human behavior have
reported several architectures. VHD++ [10] used the approach of
pluggable components, all at the same level, which greatly differs
from more recent game engines. Moreover, even though lacking in
detail regarding software integration of the hardware components,
the authors in [15] use a game engine as the core of their system.
Our solution uses similar components to the latter, but is not as
complete in terms of sensors because it aimed at allowing more
mobility to one or more users.

The VR community has developed several development environ-
ments [2, 20, 8] and specially tailored languages [1, 4, 5] with in-
teresting features for this domain. The wealth of functionality and
community support around game engines such as Unity and Un-
real is overwhelming, thus making them the most commonly used
technologies for current VR experiences. Our proposed solution
integrates the best of two worlds: Unity and VRPN [18, 19].

We decided to use Unity, a development environment released
in 2005, because of its easy learning curve and the large amount
of features it provides for game development, and its full support
for novel VR devices. However, during the architectural design

phase, we could not easily identify mature technologies for collab-
orative VR application within the Unity’s ecosystem. Therefore,
we decided to use VRPN, a 20 year old, open source library for
the integration of novel devices in VR applications, with various
useful features, such as the following: Unification of data types;
multipoint communication from devices; record and playback with
speed control capabilities for time stamped data; use of both UDP
and TCP connections for highest performance; and the possibility
of using just TCP when network restrictions arise. As expected,
there are several plug-ins that allow Unity users to connect periph-
erals through VRPN, but not all of them include the aforementioned
functionalities, and all of them provide solutions that are limited by
Unity´s frame rate, a fixed value of 60Hz in its mobile implementa-
tions.

Our infrastructure could be classified as an After Action Re-
view (AAR) System, a term coined more than 20 years ago for
systems that allow ”collecting, analyzing and reviewing the results
of a training exercise” [21]. This system provides a way to seam-
lessly and safely save all events generated from a short collabora-
tive experience between two users, by using current equipment and
development environments. When comparing this system to the fu-
ture expectations they had at that moment, we fulfill most of their
expected functionality. However, we do not provide sophisticated
review capabilities since they are domain dependent, we do not re-
quire voice or video synchronization, and we do not depend upon
distributed data storage such as in [7], although VRPN could handle
this last feature. Previous solutions have used VRPN for AAR, such
as [6]. Nonetheless, we test this solution for full body tracking. [17]
presents a similar solution that integrates more input types, but they
decided to limit the frame rate to 60Hz, which could be constrictive
in the near future.

Several review systems have been implemented throughout the
years in different domains, with particular purposes and technolo-
gies. The system in [11] proposes a closed solution in the domain of
health training, so that ”students could become self aware of their
actions [...] and gain insight on how to improve [...]”. The sys-
tem in [9] presents a system that records and analyzes gaze data
for multiple users, in a distributed way. Even though our system
provides similar functionalities to those of previous systems, we in-
clude more data about a users´ pose. However, given our current
focus, our analysis tools are still a part of the future work.

We used multithreading capabilities to extend one of the many
available VRPN clients, so that it could handle in Unity two way
communication of strings and refresh rates above 60 fps, which is
currently a fixed value in mobile devices. In terms of hardware,
we use the Perception Neuron mocap system by Noitom, which
captures wirelessly up to 56 points per user, including 2 points per
finger. We used Samsung’s Gear VR as HMD because of its wire-
less capabilities, and a Phasespace system for accurate positional
and directional tracking in a large space of about 20m by 10m.

3 OUR ARCHITECTURE

We will now describe our solution and the rationale behind it. Sub-
sections will show the heuristic we applied to select this architec-
ture, its main advantages, some limitations, and how we envision a
comparison between this solution and future ones. Figure 2 shows
an UML-like deployment diagram with the main components of
the proposed solution. As can be seen in this figure, our solution
follows a client-server architecture that has in its basic deployment
a VRPN based server, two android based clients, and a PC client
for the main control of the experience. Remote clients could be
connected to the main server, even through restricted firewalls, by
means of the tcp-only connections that VRPN supports.

We developed the following plug-ins within the VRPN server:

• Device support for two suits of the Noitom’s Perception Neu-
ron motion capture system. Noitom already provides a plug-in
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Figure 2: Overall architecture of our solution. A Main Server integrates the data from several devices and sends it to a Console Client and two
Android Clients (we show one of them here). A remote Main Server receives all the information from the local server and makes it available
in the remote site.

in Unity for reading such data, but the use of such a module
required to run a Unity process in our server, a path we de-
cided against given the functionality of Unity as a front end
tool.

• A simulator server that generates car traffic events for some of
the experiences we created. Although it is not fully described
in this paper, it is worth mentioning as part of the architectural
decisions we made.

• A method to seamlessly send information from a real device
or from a pre-recorded log file. This allow us to simulate de-
vices without changing anything in a client.

• A proxy device that connects to another VRPN client and
broadcasts the obtained data. This functionality allowed us to
encapsulate the physical architecture of our solution, whilst
providing to provide one central server per site for all client
connections.

• Our main server consists of a VRPN device and client that
receives text messages from the console client and controls
some of the previously mentioned devices and features.

Each android client preloads common geometry for rigged vir-
tual humans and their scenario, sends and receives string commands
for control purposes, and receives tracking information from our
server. A special configuration file allows us to tune the specific
behavior of each client, so that they can report different names to
the log system, for example. Finally, the console server provides all
functionality of android clients, plus a basic button based interface
for sending commands to our server.

3.1 Main Advantages
There are several advantages that we envisioned from this archi-
tecture from its design, and some we found during the course of
its deployment. In terms of features that VRPN supports, we took
advantage of UDP connections for data with high refresh rates and
TCP connections for lower rate data, text based control messages,
and clients behind secured firewalls. Moreover, we made the most
of its logging facilities, its multi-client support, its standard data
types, the existing support for multiple devices, and the standard

method to support new ones. At the beginning of our development,
we also took advantage of one of the multiple VRPN plug-ins for
Unity in order to support the required client functionality. We can
also replace devices for others that produce the same information,
by taking advantage of the standard data types that VRPN uses.
However, this can be problematic in the case of quaternions, as we
will describe later.

We also took advantage of the fact that VRPN is open source to
develop the following functionalities:

• Multithreaded support for slow devices in the server. One ex-
ample is the Perception Neuron, which is updated at 60Hz and
it is slow in comparison to other devices we used such as the
Phasespace traking system, which is configured in our setup
to 480Hz but can run at twice this speed. This could create
problems when clients cannot read data at the fastest frame
rate. Even though there is a solution in VRPN — based on
the Jane stop this crazy thing() function — that samples high
frequency devices to make their event rate comparable, we de-
cided to create a different thread that waits for data from the
Neuron and does not slow down other devices. We created a
shared data structure and a mutex for each tracker in the Neu-
ron; both threads use the mutex to perform tracker operations.
Given that the probability of collision between threads is very
low, read operations in the main VRPN thread hardly have to
wait for writing operations in the other thread.

• Multithreaded support for all devices in the client. As part
of the solution for high refresh rate devices, we developed a
multithreaded client for VRPN. Such a client can read events
when they are generated and handle them as desired. In our
case, we used the latest data available for each device at a
particular frame, and we considered using some smoothing
functions where necessary.

• Considering that VRPN selects a random set of ports by de-
fault, which use TCP and UDP protocols, we decided to
change the code within VRPN in order to limit the communi-
cation to a specific port when firewall restrictions are manda-
tory.
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Figure 3: Seamlessly Reading from a File or a Device.

Figure 4: Proxy Mechanism.

• Our server and clients are able to receive and send string mes-
sages, which were used for control purposes. In this way, we
could tell clients which scene had to be loaded at a particular
time, for example.

• Figure 3 shows the mechanism we used to seamlessly send
information from a file or from a real device. We used the
following combination of VRPN devices: one for the real de-
vice, one for the file, one that hid the previous two and gave
clients a uniform interface and device name, simply called d
in this figure, and a control device that received string com-
mands and told d which stream it should forward next. We de-
fined a directory in the configuration file where log files could
be found, and included in a string command which particular
file should be loaded. Common commands such as PLAY or
PAUSE were also available.

• Figure 4 shows our proxy devices. M1, M2, and M3 are three
machines that are connected to three different devices, hw1,
hw2, and hw3. The last machine is remote and secure, con-
nected only through TCP. We can hide this architecture from
the point of view of M3, in particular the existence of M1,
by creating proxy devices like d3 and d2. In this figure, d2
sends the same information as d1 and d3. However, the exis-
tence of M1 is hidden to C2, so that we could hide complex
hardware architectures in M2. This configuration also makes
it possible to hide TCP dependencies with proxies in VRPN.
A single dropped TCP connection will hang all other devices
in a VRPN server. In the same figure, C3 will keep on getting
events from d4, regardless of whether the connection between
d3 and d2 is active or not, whereas d2 will hang d5 while the
TCP connection is having problems.

Both VRPN and Unity are multi-platform; for this reason, we
could target android based and windows based clients with the same
codebase. However, some ifdef sections had to be added to the
VRPN code in order to handle android’s specific implementation,
therefore we had to develop a specially tailored project in Visual
Studio 2015 for cross compiling from Windows to android.

3.2 Some Limitations and Alternatives
We have mentioned two limitations that can be easily overcome: In
order to connect more than two users, we could use several servers,
each one in charge of up to two users, and use proxy servers in
order to hide this architecture from clients. Our current specially
tailored Visual Studio 2015 project could also be replaced by a spe-
cially tailored CMake configuration file with cross compiling fea-
tures, which is the standard tool that VRPN uses.

However, the inherent complexity of supporting the integration
of two technologies makes development harder. Our entire appli-
cation has required approximately 8 man-months for development,
and it may be argued that technology integration has taken a good
part of this time. Figure 5 shows an alternative we considered,
which uses a more complex, Unity based console application, and
replaces VRPN with a Unity based network layer. Even though it
is beyond the scope of this work to develop such an alternative and
use the metrics in Section 3.3 for comparison purposes, we decided
to choose the architecture that uses open source code, which we be-
lieve to be better because it gave us control during development and
allowed us to reuse functionalities from the VRPN.

Finally, when compared to the implementation in Unity, we
experienced certain issues with the quaternion implementation in
VRPN. In Figure 5, we could used the framework provided by
Noitom to animate a virtual avatar, that sends Euler angles between
the Noitom’s device manager and Unity. However, in Figure 2,
we wanted to use quaternions between the Android Client and the
Main Server, since it is part of the basic type that VRPN uses for
trackers. This required the use of a EulerToQuaternion(E) function
in the VRPN server, followed by a QuaternionToEuler(Q) function
in the Unity client, in order to re-use Noitom’s animation system.
Currently, we have that E ′ 6= E as shown in the following formula:

E ′ = QuaternionToEuler(EulerToQuaternion(E)) (1)

Given that the relation between quaternions and euler angles is
not bijective, the formula above is not strictly required for all con-
versions between these two representations. Consequently, Unity
functions hold this equality whereas VRPN functions do not. This
created problems in the integration between Unity and VRPN.
Moreover, it is difficult to point out the differences between the
open source versions of these functions in VRPN, and the closed
versions in Unity. Therefore, our current implementation of the
Noitom’s driver for VRPN does not use its standard tracking type.

3.3 Evaluation
First, we used black box tests to compare the output of our sys-
tem to some references. For example, we compared the output of
our architecture for the Perception Neuron with the output that can
be obtained from the examples provided with the equipment. We
detected this way the issues related to quaternions described before.

Our implementation runs at least at 60Hz using a Gear VR. We
fine tuned this feature with the aid of the Unity profiler until we
achieved such frame rate. This entailed changes in the scene and
in the way our VRPN thread in Android updated information to the
main thread, as described in Section 3.1. Any frame rate lower than
this would be very uncomfortable for the user, because the delay
and related artifacts are very visible.

Traditionally, lines of code, development time, and performace
metrics have been used to compare competing implementations of
the same functionality. However, these do not take into account
development effort in terms of time, learning curve, or bugs. We
propose to complement performance metrics with the data shown
in Table 1, which shows how functionality is completed over time.
Values in the table range between 0 and 1, and are derived from
the comments left at the source code management system in use.
They can be adjusted backwards in time, for example, when a bug
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Figure 5: An Alternative Solution. The Unity Console integrates all the information from various devices and sends it to the Android clients.
Remote sites connect to the console and get device information from it.

Table 1: Level of Development per Requirement over Time.

in an existing functionality is discovered. Although these values
are subjective, they can give a broad idea of the effort required to
develop a particular software.

If we add the values of different criteria each month, we can
produce Figure 6, which shows how development has evolved over
time. Ideally, the curves with big areas are preferred, since they
show that the functionality could be implemented fast, with min-
imal errors. If several implementations are available, time could
be scaled to a uniform value and therefore the areas could be com-
pared.

4 CONCLUSIONS AND FUTURE WORK

We have presented an architecture for CVR systems that enabled
us to track and record the full body of several users in a VR en-
vironment. This solution, based on Unity and VRPN, will allow
us to implement all functionality of an after action review system,
while it shows how existing VR technologies can be competitive in
the current VR revolution. In summary, the main design decisions
behind our solution were the following:

• A client should not depend on the particular architecture of a
distributed solution. Proxies could help to hide such details.

• Separate the server code from all clients, so that the server
could run at the highest rate possible, and does not depend
on any interaction with any user. The server should run any
simulation required, so its results could be distributed to all
clients.

Figure 6: Cumulative Level of Development over Time.

• In the server of a collaborative solution, encapsulate slow de-
vices in a different thread, so that faster devices do not suffer
from the lack of response of others.

• In mobile clients, perform device reading in a separate thread,
in order to facilitate the execution of such clients at the re-
quired frame rate. This avoid issues with device drivers of
slow devices that may hang a client, or fast devices which
may flood such client. In the latter case, it may be necessary
to discard some events.

• Logged information should be indistinguishable from the data
obtained from real devices. This facilitates playback.

Our VRPN code for the support of Perception Neuron data is
available in GitHub, and it is pending revision in order to be inte-
grated to the main distribution. In the future, we plan to use this
infrastructure in several user studies, and complement its current
functionalities with an easier to use interface. We also plan to per-
form experiments with geographically-apart collaborators, to fully
test the capabilities of this solution. In those cases, we plan to con-
sider conflicting situations among several users, which are not con-
sidered in our current implementation.
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