
A General Reactive Algorithm for Redirected
Walking using Artificial Potential Functions

Jerald Thomas* Evan Suma Rosenberg†

University of Minnesota

Figure 1: Artificial potential function surfaces (top) and normalized negative gradient fields (bottom) of the three evaluated physical
environments. The proposed reactive redirected walking algorithm utilizes the negative gradient as a direction in which to steer the
user.

ABSTRACT

Redirected walking enables users to locomote naturally within a
virtual environment that is larger than the available physical space.
These systems depend on steering algorithms that continuously redi-
rect users within limited real world boundaries. While a majority
of the most recent research has focused on predictive algorithms,
it is often necessary to utilize reactive approaches when the user’s
path is unconstrained. Unfortunately, previously proposed reactive
algorithms assume a completely empty space with convex bound-
aries and perform poorly in complex real world spaces containing
obstacles. To overcome this limitation, we present Push/Pull Reac-
tive (P2R), a novel algorithm that uses an artificial potential function
to steer users away from potential collisions. We also introduce
three new reset strategies and conducted an experiment to evaluate
which one performs best when used with P2R. Simulation results
demonstrate that the proposed approach outperforms the previous
state-of-the-art reactive algorithm in non-convex spaces with and
without interior obstacles.

Index Terms: Human-centered computing—Human computer

*e-mail: thoma891@umn.edu
†e-mail: suma@umn.edu

interaction (HCI)—Interaction paradigms—Virtual reality;

1 INTRODUCTION

Redirected walking (RDW) enables natural movement in immersive
virtual environments that are smaller than the available physical
space. Compared to less immersive locomotion techniques such
as “flying,” walking has been shown to improve users’ abilities to
navigate [15] and their subjective sense of presence [21]. Algorithms
that employ RDW are generally categorized as either reactive or
predictive. Reactive algorithms have no knowledge of the user’s
intended virtual path and instead rely on simple heuristics. For
example, Steer-to-Center (S2C) attempts to steer the user towards
the center of the physical space at all times. Predictive algorithms
have some knowledge of the user’s intended virtual path. With this
knowledge, predictive algorithms are able to steer the user in a way
that is favorable considering the user’s probable future motion. In
cases where predictive algorithms are applicable, they have been
shown to greatly out-perform reactive algorithms [10, 22]. However,
due to their relatively simplistic implementation, reactive algorithms
are more generalizable for applications that involve free exploration
or unconstrained movement. Therefore, there is no “silver bullet”
approach to redirected walking, and improvements in both reactive
and predictive algorithms are valuable for advancing the state-of-
the-art in virtual reality locomotion.

Current reactive RDW algorithms rely on three assumptions about
the physical environment: that it is clear of any obstacles, convex

(usually rectangular or circular), and static. In this paper, we refer to
spaces that meet these assumptions as ideal physical environments,
and those that do not as non-ideal physical environments. In most
potential operating environments outside of a tightly controlled lab
or exhibit, these assumptions are overly restrictive and unrealistic for
practical use “in the wild.” To solve this, RDW algorithms should be
contextually aware of the physical environment and able to generate
a solution that avoids obstacles while maximizing use of physical
spaces with non-convex boundaries.

To address these goals, this work presents a novel reactive ap-
proach that was designed to relax the assumptions of ideal physical
environments, known as the Push/Pull Reactive (P2R) algorithm.
P2R utilizes potential functions that include an attractive force com-
ponent and a repulsive force component. Essentially, it works by
pushing the user away from undesirable locations (boundaries and
obstacles) and pulling the user towards desirable locations (goals).

This paper presents four primary contributions. The first is a
formal description of the P2R algorithm. Second, we describe three
new reset techniques that are also necessary for applying RDW in
non-ideal spaces. We then conducted a simulation-based experiment
to determine which of these reset strategies will perform best when
utilized with P2R. Finally, we present an evaluation that showing
that P2R outperforms the previous state-of-the-art reactive algorithm
in non-ideal physical environments.

2 BACKGROUND AND RELATED WORKS

Over the past 15 years, there has been an extensive quantity literature
on redirected walking in virtual reality; a recent review can be found
in Nilsson et al. [13]. RDW employs three main techniques that are
commonly referred to as self-motion gains [14]. These gains exploit
the fact that human vision dominates vestibular sensation when the
magnitude of the conflict does not exceed perceptual thresholds,
thereby enabling users to be imperceptibly redirected into walking
along virtual path that is decoupled from their physical path. Trans-
lation gains apply a scale factor to the user’s positional displacement.
Rotation gain is similar to translation gain, but it is applied to the
user’s orientation instead of positional displacement. It is assumed
that the system cannot always find a set of gains that maintain per-
ceptual thresholds while keeping the user within the boundaries of
the physical environment. Therefore, when the user approaches the
boundaries, the system performs a reorientation event. Typically re-
ferred to resets, these events essentially pause the virtual experience
and reorients the user in a favorable directly, usually towards the
center in an ideal physical environment.

Perceptual Thresholds

Redirected walking can provide a compelling experience if the
user does not perceive the manipulations induced by the system.
Steinicke et al. determined that in order to remain undetected by the
average user, rotation gains need to be greater than 0.67 and less than
1.24, translation gains need to be greater than 0.86 and less than 1.26,
and curvature gains need to have at least a 22.03 meter radius [19].
Grechkin et al. showed that combining translation and curvature
gain does not appear to change the user’s detection threshold for cur-
vature gain [4]. Neth et al. demonstrated a correlation between the
user’s physical velocity and curvature gain detection, namely that as
the user physically translates faster, their ability to detect curvature
gain is greater [11]. Hutton et al. noted that the methods previously
used to determine perceptual thresholds suggested large amounts
of variability between participants. They introduced a method for
estimating an individual’s perceptual thresholds for rotation gains
that is much quicker than previous methods [7]. Recently, there
has been work attempting to apply rotation and curvature gains that
exceed the usual perceptual limits by introducing rotations during
blinking or saccadic eye movements [9, 12, 20].

Reactive Algorithms
Some of the first RDW algorithms were reactive. Hodgson et al.
showed that in most scenarios, S2C outperforms other reactive al-
gorithms [6]. They posit that steer-to-orbit (S2O), a reactive RDW
algorithm that tries to steer the user along a circle around the phys-
ical environment center, might outperform S2C if the virtual path
is long and consists of very few turns. Azmandian et al. further
compared reactive algorithms in a variety physical environment
sizes and aspect ratios [1]. They also modified the S2C algorithm
by adding “center-based translation gain.” Their results reinforce
those found by Hodgson et al., showing that S2C (with center-based
translation gain) outperforms the other reactive algorithms in most
practical use cases. However, for a 1000m straight virtual path, S2O
outperformed S2C in a narrow window of physical environment
sizes that corresponded to the maximum curvature gain. Initial de-
scriptions of RDW algorithms for non-ideal physical environments
have recently been proposed by Chen et al., though no evaluation
was performed [3].

Obstacles in the Physical Environment
An essential step for environmentally aware RDW algorithms is
acquiring obstacle and boundary information. The simplest method
is to provide this information before the experience begins, but this is
potentially very tedious and would not allow for dynamic obstacles.
Hirt et al. provided a method for extracting environment geometry
in real-time [5]. Their method uses simultaneous localization and
mapping (SLAM) techniques to obtain environment geometry as the
user explores the physical environment. This method can acquire
environment information either before or during the experience
and allows for dynamic obstacles to be registered. SLAM tracking
capabilities are becoming increasingly integrated with immersive
displays and mobile devices, which is a promising trend for the
viability of RDW algorithms that require knowledge of the physical
environment.

Other methods for managing environments with obstacles in vir-
tual reality that do not employ RDW have been evaluated. Simeone
et al. represented physical obstacles and boundaries with virtual
objects that were contextually relevant to the virtual experience [17].
The study found that users are more likely to avoid walking into
obstacles but were also likely to attempt to interact with the virtual
object. The same group also evaluated the effectiveness of replac-
ing obstacles and boundaries with surfaces that a person would not
typically walk onto, such as water or lava, and found that they could
successfully alter a user’s path to avoid obstacles [16]. Sra et al.
presented similar work in which they created procedurally gener-
ated virtual environments that had a walkable area that matched
the walkable area of the physical environment. Their system was
capable of recognizing and tracking a small set of physical objects,
for example a chair, and replacing them in the virtual environments
with proper representations. This allowed the user to interact with
certain physical objects [18].

3 P2R ALGORITHM DESCRIPTION

In terms of implementation details, P2R is similar to S2C with
center-based translation gain. The main difference is in determining
the ideal direction to steer the user. S2C relies on the simple center-
based heuristic, which is chosen as a goal position because it is
the farthest position from all boundaries in an ideal rectangular
physical space. However, for more complex physical environments
containing obstacles or irregular boundary shapes, the center may no
longer be the most ideal position to steer the user. It is impractical
to pre-compute an ideal goal position for all possible environment
layouts. Additionally, dynamic environments with moving obstacles
will alter the ideal goal position. As such, an algorithm needs to
be able to determine an ideal position in real-time. Comparable
problems exist in the field of robotics and are commonly solved

using artificial potential functions [8]. Equation 1 shows a simple
example of a potential function given the set of obstacles O. Here.
the value of the potential function at a user’s position x is one half
the distance to the goal position plus the sum of one over the distance
to the nearest point of an obstacle for all obstacles.

U(x) =
1
2
||x− xgoal || + ∑

ob∈O

1
||x− xob||

(1)

Equation 1 can be broken into two components: an attractive
force (Equation 2) and a repulsive force (Equation 3).

Uattractive(x) =
1
2
||x− xgoal || (2)

Urepulsive(x) = ∑
ob∈O

1
||x− xob||

(3)

Instead of using a goal heuristic to keep the user away from
obstacles and the boundary, P2R uses the repulsive force component
of a potential function. This allows the possibility to have a goal
position that does not necessarily have the purpose of keeping the
user away from the boundaries. For example, one may use the
attractive force component to steer the user towards a physical object
they wish the user to interact with. This work focused on comparing
P2R with S2C, so the attractive force component was not used.

Setup for P2R consists of providing the algorithm with RDW
gain thresholds and a list of obstacles. For the implementation,
the evaluations the obstacles had a convexity requirement. The
boundaries of each environment were modeled as four rectangular
obstacles.

Each frame, P2R uses the centered finite difference method to
calculate the negative gradient, −∇U(x), of the potential function at
the user’s position, x. The algorithm then uses the negative gradient
to assign RDW gains for the frame. When the user is translating, the
algorithm calculates curvature gain and translation gain. If the nega-
tive gradient is clockwise of the user’s forward direction, the algo-
rithm applies maximum positive curvature. If it is counter-clockwise,
maximum negative curvature is applied. If the dot product of the
negative gradient and the user’s forward direction is negative, the
algorithm applies minimum translation gain. This effectively slows
down the user when the user is translating in a direction opposite
of the negative gradient. When the user is rotating, the algorithm
calculates rotation gain. If the user is rotating in such a way that the
angle between the user’s forward direction and the negative gradient
is decreasing, then maximum rotation gain is applied. If the angle is
increasing, then minimum rotation gain is applied.

A run-time complexity analysis shows that the P2R algorithm is
O(N) where N is the number of obstacles in the environment.

4 RESET STRATEGIES

Obstacles present a new problem to the standard “reset to center”
(R2C) reset strategy that has previously been applied in ideal physi-
cal spaces. For example, if the obstacle that has caused the user to
reset is positioned between the user and the center of the physical
environment, this strategy will fail. In this scenario, the user would
complete the reset still facing the obstacle, which would either result
in a collision or an endless reset loop. To overcome this limitation,
we propose three possible alternative reset strategies: modified reset
to center (MR2C), reset to gradient (R2G), and step-forward reset to
gradient (SFR2G).

MR2C: When the user’s reset is triggered by an environment
boundary or by an obstacle that is not positioned between the user
and the physical environment center, MR2C behaves exactly as
R2C. However, when the reset is triggered by an obstacle positioned
between the user and the physical environment center, the user is
reoriented parallel to the face of the obstacle in the closet direction
towards the center.

R2G: Given a potential function and its negative gradient, the
basic assumption is that the negative gradient points towards the
most ideal direction. Therefore, this method reorients the user in the
direction of the negative gradient at the current position.

SFR2G: There are situations where reorienting the user in the
direction of the negative gradient may direct them towards another
obstacle or boundary instead of open space. This is particularly true
when there is no attractive force component of the potential function.
To accommodate for this, SFR2G takes several small steps following
gradient descent along the potential function and uses the resulting
position as a target to reorient the user. Step size and number of
steps are variables that can be tuned.

5 EVALUATION FRAMEWORK

5.1 Physical Environment Layouts

For the following experiments there were three physical environ-
ment layouts: environments A, B, and C. All layouts have square
boundaries with a side length of either 10m or 20m. Environment
A is a control layout and consists of an environment free of any
obstacles. Environments B and C each contain a single square obsta-
cle with a side length of 40% of the environment side length. The
obstacle in environment B was adjacent to the lower y boundary and
centered along the x boundary, essentially creating a non-convex
physical environment. The obstacle in environment C was centered
to the physical environment in both dimensions. These environ-
ments were chosen as a representative sample of non-ideal physical
environments. Environment B represents a space with non-convex
boundaries, and environment C represents a space with an interior
obstacle. Because the obstacle for environment C was chosen to be
in the center, it represents the worst case scenario for S2C.

5.2 Simulation Design

The two experiments reported in this paper were conducted using
simulation. To comprehensively evaluate the performance of RDW
algorithms, it is often necessary to run a very large number of trials
and test numerous possible parameters, which is impractical for
live user studies. For this reason, simulation-based evaluation is a
common practice in the RDW literature (e.g., [1, 2, 6, 22]). Each per-
mutation consisted of 100 trials, each with 100 randomly generated
virtual waypoints which would make up the simulated user’s virtual
path. The same 100 virtual paths were used for each permutation.
Each waypoint was generated at a random distance from the previ-
ous waypoint using a uniform distribution between 2 and 6 meters.
Similarly, each waypoint was generated at a random rotation from
the previous waypoint using a uniform distribution between −π and
π radians. This methodology was derived from the generation of the
”Exploration (small)” virtual paths in [1].

For environments A and B, the simulated user started in the
center of the environment facing towards the lower Y boundary. As
environment C contained an obstacle in the center, the simulated user
started in the center of the lower-left quadrant facing the lower Y
boundary. At the start of a trial. the simulated user would turn to face
the first waypoint and then walk directly towards it. Upon reaching
a waypoint the simulated user would stop, turn to face the next
waypoint, and again walk directly towards it. This would continue
until the simulated user reached the final waypoint. The simulated
user turned at a constant rate of π

2 radians per second and translated
at a constant speed of 1 meter per second. The physical component
of the simulated user would be redirected using either S2C or P2R.
S2C was implemented as described in [6] with the addition of center-
based translation gain [1]. Translation and rotation gains for both
algorithms were limited to the detection thresholds determined by
Steinicke et al. [19]. The maximum curvature for both algorithms
was set to a radius of 7.5m, which is a commonly employed threshold
value [1, 6].

A reset was triggered upon intersection with one of the boundaries
or one of the obstacles. The simulated user’s virtual representation
would complete a full rotation and their physical representation
would rotate to face a target in the physical world, which was deter-
mined by the selected reset strategy.

The simulations were run on a Dell PowerEdge R815 with 4x
AMD Opteron 6220 processor and 192GB of RAM. All simulations
were run with a fixed framerate of 90 fps. Extensive pilot testing of
the simulator was done using no redirected walking and S2C. The
results were then informally compared against the results from [1]
to verify simulator validity.

6 EXPERIMENT 1: OPTIMAL RESET STRATEGY

6.1 Design
The purpose of Experiment 1 was to determine which of the reset
strategies described in section 4 work best when coupled with P2R.
To accomplish this, a 2x3 study was constructed for each environ-
ment with environment size (10m, 20m) and reset strategy (MR2C,
R2G, SFR2G) as independent variables. The dependent variables
were the number of resets and the mean virtual distance the simu-
lated user traveled between resets. As previously mentioned, SFR2G
has two parameters that can be tuned: the number of steps and the
step size. Based on internal pilot testing, the number of steps was
set to 5 for 10m environments and 15 for 20m environments. The
step size was 0.1m for all cases. Experiment 1 was conducted using
the aforementioned simulation framework.

For experiment 1, we had two hypotheses. The first hypothesis
is that all three reset strategies will not perform significantly differ-
ently for environment A. In the empty environment, the gradient
field visualization (see Figure 1) shows that the negative gradient
always points approximately towards the center of the environment.
Therefore, after a reset, the simulated user will be oriented in roughly
the same direction for all three reset strategies. However, for en-
vironments B and C, we hypothesized that SFR2G would perform
better than both R2G and MR2C.

6.2 Results
A Kolmogorov-Smirnov test for normality was conducted for both
dependent variables, and these data were not normally distributed.
Because of this, results for Experiment 1 were analyzed using non-
parametric techniques and the reported values are medians (Mdn)
and inter-quartile ranges (IQR). Results for Experiment 1 were
analyzed using a Kruskal-Wallis H-test for both the 10m and the
20m conditions. The Mann-Whitney U test was used for post-hoc
multiple comparison tests. A significance value α = 0.05 was used
for all tests. P-values reported for post-hoc multiple comparison
tests were adjusted using the Bonferonni method.

6.2.1 Environment A:
Analysis of the number of resets found no significant difference
between reset strategies for the 10m condition (Mdn = 22.0, IQR =
4.0) or the 20m condition (Mdn = 5.0, IQR = 3.0). Similarly, for
the mean distance traveled between resets, there were no significant
differences between strategies in the 10m condition (Mdn = 17.645,
IQR = 3.321) or the 20m condition (Mdn = 77.778, IQR = 42.304).
The lack of significant results is consistent with our first hypothe-
sis. We would not anticipate any differences in reset strategy per-
formance, because Environment A is a completely empty space.
However, these results confirm that these algorithms are working as
expected.

6.2.2 Environment B:
Analysis of the number of resets for the 10m condition found a signif-
icant effect for reset strategy, H(2) = 14.567, p < 0.001. Post-hoc
analysis found fewer resets were encountered using MR2C (Mdn =
35.0, IQR = 5.25) compared to R2G (Mdn = 37.0, IQR = 7.0),

U = 3685.0, p = 0.002. Additionally, fewer resets were encoun-
tered using SFR2G (Mdn = 35.0, IQR = 5.25) compared to R2G
(Mdn = 37.0, IQR = 7.0), U = 3621.5, p < 0.001. However, analy-
sis of the number of resets for the 20m condition found no significant
difference between reset strategies (Mdn = 11.0, IQR = 4.0).

Analysis of the mean virtual distance traveled between resets
for the 10m condition found a significant effect for reset strategy,
H(2) = 14.944, p < 0.001. Post-hoc analysis indicated that the
distance was greater using MR2C (Mdn = 11.108, IQR = 1.832)
compared to R2G (Mdn = 10.452, IQR = 1.881), U = 6352.0, p =
0.001. Additionally, the mean virtual distance traveled between
resets was greater using SFR2G (Mdn = 11.021, IQR = 1.482)
compared to R2G (Mdn = 10.452, IQR = 1.881), U = 6385.0, p =
0.001. However, there were no significant differences between reset
strategies for the 20m condition (Mdn = 34.639, IQR = 14.272).

6.2.3 Environment C:

Analysis of the number of resets for the 10m condition found a signif-
icant effect for reset strategy (H(2) = 6.017, p = 0.049). However,
post-hoc analysis found no further significant results. Additionally,
there were no significant difference between reset strategies in the
20m condition (Mdn = 25.0, IQR = 5.0).

Analysis of the mean virtual distance traveled between resets
for the 10m condition found a significant effect for reset strat-
egy, H(2) = 7.89, p = 0.019. Post-hoc analysis found the mean
virtual distance traveled between resets was greater using MR2C
(Mdn = 5.966, IQR = 0.800) compared to R2G (Mdn = 5.785,
IQR = 0.563), U = 5973.0, p = 0.034. Additionally, the mean
virtual distance traveled between resets was greater using SFR2G
(Mdn = 5.790, IQR = 0.535) compared to R2G (Mdn = 5.785,
IQR = 0.563), U = 6014.0, p = 0.026. There were no signif-
icant differences between reset strategies in the 20m condition
(Mdn = 15.386, IQR = 2.700).

6.3 Discussion

The results confirmed our first hypothesis and showed that for en-
vironment A, there was no statistically significant differnece in
performance between any of the three reset strategies. For environ-
ments B and C, SFR2G performed better than R2G. These results
are consistent with our second hypothesis. However, the results
for MR2C were better than we expected; it outperformed R2G and
was not significantly different from MR2C for environments B and
C. These results made sense after further analysis of some of the
individual trials. MR2C would always orient the user in the direction
of the most open space in the environments that were tested. SFR2G
would orient the user in the direction of the most open space but
at a much more local level, only looking as far as the number of
steps and step size allowed. R2G, by design, would orient the user
directly away from the obstacle or boundary that triggered the reset.
If there was not much space between this obstacle and another ob-
stacle or boundary then the user would only have to traverse a small
amount before running into the second obstacle/boundary. However,
given adequate space, the user would get redirected to face the di-
rection of the most open space. It is possible to conceive of more
complex environments where SFR2G might outperform MR2C and
more extensive evaluations need to be done to properly examine
the differences between them. Further systematic evaluation of the
step size and number for SFR2G in different physical environment
configurations would also be valuable.

In the three environments tested, SFR2G performed no worse than
MR2C, and we speculate that it may perform better in more complex
environments. Also, our results suggest that in a larger environment
with sparser obstacles, reset strategy may be less important compared
to smaller environments that are more densely packed with obstacles.
However, in general, our results from Experiment 1 indicate that

Figure 2: Experiment 1 results for environment B (left), and environment C (right). Boxplots represent the median and IQR. The whiskers represent
the data spread not including outliers.

both SFR2G and MR2C are viable reset strategies for non-ideal
physical environments.

7 EXPERIMENT 2: COMPARING S2C AND P2R
7.1 Design
The purpose of Experiment 2 was to compare P2R and the previ-
ous state-of-the-art reactive RDW algorithm, S2C. To accomplish
this, a 2x2 study was conducted with the following independent
variables: environment size (10m, 20m) and RDW algorithm (S2C,
P2R). Dependent variables included the number of resets and the
mean virtual distance the simulated user traveled between resets.
Experiment 1 showed that SFR2G and MR2C performed similarly
for all of the tested environments. Therefore, we selected MR2C as
the reset strategy, because it could readily be applied to both RDW
algorithms and provide a fair comparison.

We had two hypotheses for Experiment 2. Similar to the first
experiment, we hypothesized that S2C and P2R would have no sta-
tistically significant difference in performance for environment A.
However, for environments B and C, we hypothesized that P2R
would outperform S2C. Upon examining the gradient field for En-
vironment B, shown in figure 1, it can be seen that S2C and P2R
will both try to steer the user in roughly the same area, although
S2C will attempt to steer the user closer to the obstacle than P2R.
Environment C could be considered the worst case scenario for S2C,
because the algorithm will be actively attempting to steer the user
into the obstacle. Therefore, we would expect a greater difference in
performance for this scenario.

7.2 Results
For both dependent variables, a Kolmogorov-Smirnov test for nor-
mality was conducted and none of the data was shown to be normally
distributed. Because of this, results for Experiment 2 were analyzed

using non-parametric techniques and the reported values are medi-
ans (Mdn) and inter-quartile ranges (IQR). Results for Experiment
2 were analyzed using the Mann-Whitney U test for pairwise com-
parisons. A significance value α = 0.05 was used for all tests, and
p-values reported were adjusted using the Bonferonni method.

7.2.1 Environment A:

Analysis of the number of resets found no significant difference
between reset strategies for the 10m condition (Mdn = 22.0, IQR =
4.0) or the the 20m condition (Mdn = 5.0, IQR = 3.0). The mean
distance traveled between resets was also not significantly different
for the 10m condition (Mdn = 17.784, IQR = 3.272) or the 20m
condition (Mdn = 77.135, IQR = 40.523). Similar to Experiment
1, these results are consistent with our hypothesis, because this was
an empty convex environment without obstacles.

7.2.2 Environment B:

Analysis of the number of resets for the 10m condition showed
that significantly fewer resets were encountered using P2R (Mdn =
35.0, IQR = 5.25) compared to S2C (Mdn = 43.0, IQR = 7.0),
U = 8925.5, p < 0.001. This effect was also observed in the 20m
condition, with P2R (Mdn = 11.0, IQR = 4.0) outperforming S2C
(Mdn = 18.0, IQR = 7.0), U = 9077.0, p < 0.001.

Analysis of the mean virtual distance traveled between resets also
revealed significant effects. In the 10m condition, the simulated user
traveled a greater distance using P2R (Mdn = 11.108, IQR = 1.832)
compared to S2C (Mdn = 9.135, IQR = 1.353), U = 1017.0, p <
0.001. This effect was also observed in the 20m condition, with P2R
(Mdn= 35.876, IQR= 14.742) outperforming S2C (Mdn= 21.430,
IQR = 8.625), U = 875.0, p < 0.001.

Figure 3: Experiment 2 results for environment B (left) and environment C (right). Boxplots represent the median and IQR. The whiskers represent
the data spread not including outliers.

7.2.3 Environment C:

Analysis of the number of resets for the 10m condition showed that
significantly fewer resets were encountered using P2R (Mdn = 66.0,
IQR= 8.0) compared to S2C (Mdn= 94.5, IQR= 8.0), U = 9989.5,
p < 0.001. This effect was also observed in the 20m condition, with
P2R (Mdn = 26.0, IQR = 4.5) outperforming S2C (Mdn = 61.0,
IQR = 9.0), U = 10000.0, p < 0.001.

Analysis of the mean virtual distance traveled between resets also
revealed significant effects. In the 10m condition, the simulated
user traveled a greater distance using P2R (Mdn = 5.966, IQR =
0.800) compared to S2C (Mdn = 4.129, IQR = 0.291), U = 0.0,
p < 0.001. This effect was also observed in the 20m condition, with
P2R (Mdn = 15.057, IQR = 2.739) outperforming S2C (Mdn =
6.431, IQR = 1.075), U = 0.0, p < 0.001.

7.3 Discussion

The performance difference between P2R and S2C in non-ideal
environments (B and C) is the most important result reported in
this paper. In the most ideal scenario for S2C, both algorithms
exhibited similar performance. However, P2R was more robust to
non-ideal environments, and was approximately twice as better in
some configurations. In general, we can expect that P2R will either
perform as well or better than S2C when obstacles are added to
the physical environment. As the implementation and computation
complexity are not much greater than S2C, P2R therefore appears to
be a generally superior reactive algorithm.

As expected, adding an obstacle to the environment greatly re-
duced redirected walking performance. However, it should be noted
that the obstacle used in this experiment was quite large (4x4m in
the 10m condition and 8x8m in the 20m condition). Nevertheless,
these results reinforce the importance of future research that can
address the challenges imposed by non-ideal physical environments.

8 FUTURE WORK AND CONCLUSION

There are additional evaluations that can be done to build upon the
work presented in this paper. A more thorough examination of new
reset strategies that can utilize a potential function is a promising
area for future work. Additionally, evaluations comparing P2R with
the preliminary algorithm designs proposed in [3] would be valuable.

One of the three limitations of ideal environments that was not
addressed in this work was the assumption that the physical envi-
ronment is static. We believe that P2R can easily be used to solve
the most basic form of this problem. As P2R calculates its potential
function in a real-time and continuous manner, dynamic obstacles
that move through the environment should also repel the user.

In the future, P2R can be extended to alleviate several current
limitations of redirected walking. The current form of P2R has a
two-dimensional domain for the potential function, but by increasing
the number of dimensions in the function’s domain, more interesting
information can be encoded and acted upon. For example, if the
user’s virtual information is included than we believe that P2R can be
made to behave as a predictive algorithm. Also, by adding another
user’s information to the domain than P2R could be extended to
accommodate multiple users.

In this work, we presented a novel reactive algorithm for redi-
rected walking that does not assume an ideal physical environment.
Furthermore, three new reset strategies for environments contain-
ing obstacles were proposed and compared. Further evaluations
showed that P2R performed as well or better than S2C, the reac-
tive algorithm previously considered to be state-of-the-art, in the
environments tested.

ACKNOWLEDGMENTS

This research was supported by a Google VR Research Award.

REFERENCES

[1] M. Azmandian, T. Grechkin, M. T. Bolas, and E. A. Suma. Physical
space requirements for redirected walking: How size and shape affect
performance. In ICAT-EGVE, pp. 93–100, 2015.

[2] M. Azmandian, T. Grechkin, and E. Suma Rosenberg. An evaluation
of strategies for two user redirected walking in shared physical spaces.
In IEEE Virtual Reality. IEEE, 2017.

[3] H. Chen, S. Chen, and E. S. Rosenberg. Redirected walking strategies
in irregularly shaped and dynamic physical environments. In IEEE
Virtual Reality, 2018.

[4] T. Grechkin, J. Thomas, M. Azmandian, M. Bolas, and E. Suma. Revis-
iting detection thresholds for redirected walking: combining translation
and curvature gains. In ACM Symposium on Applied Perception, pp.
113–120. ACM, 2016.

[5] C. Hirt, M. Zank, and A. Kunz. Geometry extraction for ad hoc
redirected walking using a slam device. In International Conference on
Augmented Reality, Virtual Reality and Computer Graphics, pp. 35–53.
Springer, 2018.

[6] E. Hodgson and E. Bachmann. Comparing four approaches to gen-
eralized redirected walking: Simulation and live user data. IEEE
Transactions on Visualization and Computer Graphics, 19(4):634–643,
2013.

[7] C. Hutton, S. Ziccardi, J. Medina, and E. Suma Rosenberg. Individual-
ized calibration of rotation gain thresholds for redirected walking. In
ICAT-EGVE, 2018.

[8] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Autonomous robot vehicles, pp. 396–404. Springer, 1986.

[9] E. Langbehn, F. Steinicke, M. Lappe, G. F. Welch, and G. Bruder. In the
blink of an eye: leveraging blink-induced suppression for imperceptible
position and orientation redirection in virtual reality. ACM Transactions
on Graphics, 37(4):66, 2018.

[10] T. Nescher, Y.-Y. Huang, and A. Kunz. Planning redirection techniques
for optimal free walking experience using model predictive control. In
IEEE Symposium on 3D User Interfaces, pp. 111–118. IEEE, 2014.

[11] C. T. Neth, J. L. Souman, D. Engel, U. Kloos, H. H. Bulthoff, and B. J.
Mohler. Velocity-dependent dynamic curvature gain for redirected
walking. IEEE Transactions on Visualization and Computer Graphics,
18(7):1041–1052, 2012.

[12] A. Nguyen, M. Inhelder, and A. Kunz. Discrete rotation during eye-
blink. In International Conference on Augmented Reality, Virtual
Reality and Computer Graphics, pp. 183–189. Springer, 2018.

[13] N. C. Nilsson, T. Peck, G. Bruder, E. Hodgson, S. Serafin, M. Whitton,
F. Steinicke, and E. S. Rosenberg. 15 years of research on redirected
walking in immersive virtual environments. IEEE Computer Graphics
and Applications, 38(2):44–56, 2018.

[14] S. Razzaque, Z. Kohn, and M. C. Whitton. Redirected walking. In
EUROGRAPHICS, vol. 9, pp. 105–106. Citeseer, 2001.

[15] R. A. Ruddle. The effect of translational and rotational body-based
information on navigation. In Human walking in virtual environments,
pp. 99–112. Springer, 2013.

[16] A. L. Simeone, I. Mavridou, and W. Powell. Altering user movement
behaviour in virtual environments. IEEE Transactions on Visualization
and Computer Graphics, 23(4):1312–1321, 2017.

[17] A. L. Simeone, E. Velloso, and H. Gellersen. Substitutional reality:
Using the physical environment to design virtual reality experiences.
In ACM Conference on Human Factors in Computing Systems, pp.
3307–3316. ACM, 2015.

[18] M. Sra, S. Garrido-Jurado, C. Schmandt, and P. Maes. Procedurally
generated virtual reality from 3d reconstructed physical space. In ACM
Virtual Reality Software and Technology, pp. 191–200. ACM, 2016.

[19] F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe. Estima-
tion of detection thresholds for redirected walking techniques. IEEE
Transactions on Visualization and Computer Graphics, 16(1):17–27,
2010.

[20] Q. Sun, A. Patney, L.-Y. Wei, O. Shapira, J. Lu, P. Asente, S. Zhu,
M. McGuire, D. Luebke, and A. Kaufman. Towards virtual reality
infinite walking: dynamic saccadic redirection. ACM Transactions on
Graphics, 37(4):67, 2018.

[21] M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed, M. Slater,

and F. P. Brooks Jr. Walking¿ walking-in-place¿ flying, in virtual
environments. In ACM SIGGRAPH, pp. 359–364. ACM Press/Addison-
Wesley Publishing Co., 1999.

[22] M. A. Zmuda, J. L. Wonser, E. R. Bachmann, and E. Hodgson. Opti-
mizing constrained-environment redirected walking instructions using
search techniques. IEEE Transactions on Visualization and Computer
Graphics, 19(11):1872–1884, 2013.

	Introduction
	Background and Related Works
	P2R Algorithm Description
	Reset Strategies
	Evaluation Framework
	Physical Environment Layouts
	Simulation Design

	Experiment 1: Optimal Reset Strategy
	Design
	Results
	Environment A:
	Environment B:
	Environment C:

	Discussion

	Experiment 2: Comparing S2C and P2R
	Design
	Results
	Environment A:
	Environment B:
	Environment C:

	Discussion

	Future Work and Conclusion

