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Figure 1: A demonstration of environmental alignment with obstacle avoidance. The left image shows the perceived path to a
virtual target and the physical path to a proxy target. The middle and right images show the progression of the physical path
to environmental alignment. When this occurs, the user can interact with the proxy target substituting for the virtual target.

ABSTRACT
Interactions with the physical environment, such as passive hap-
tic feedback, have been previously shown to provide richer and
more immersive virtual reality experiences. A strict correspon-
dence between the virtual and real world coordinate systems is
a staple requirement for physical interaction. However, many of
the commonly employed VR locomotion techniques allow for, or
even require, this relationship to change as the experience pro-
gresses. The outcome is that experience designers frequently have
to choose between flexible locomotion or physical interactivity, as
the two are often mutually exclusive. To address this limitation,
this paper introduces reactive environmental alignment, a novel
framework that leverages redirected walking techniques to achieve
a desired configuration of the virtual and real world coordinate
systems. This approach can transition the system from a misaligned
state to an aligned state, thereby enabling the user to interact with
physical proxy objects or passive haptic surfaces. Simulation-based
experiments demonstrate the effectiveness of reactive alignment
and provide insight into the mechanics and potential applications
of the proposed algorithm. In the future, reactive environmental
alignment can enhance the interactivity of virtual reality systems
and inform new research vectors that combine redirected walking
and passive haptics.
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1 INTRODUCTION
Due to advances in immersive technology, “room-scale” and po-
tentially even “building-scale” virtual reality (VR) experiences are
increasingly available to developers and consumers. Along with
the numerous benefits these emerging technologies provide, they
also present new challenges. One of the fundamental problems that
VR researchers and designers must solve is locomotion: movement
through the virtual world. Specifically, how can the user navigate
the virtual world while maximizing the available physical space?

Providing a VR experience that leverages physical interaction
is one of the most compelling uses of the physical space. Research
has shown this can significantly enhance the user’s experience
[10, 11]. These physical interactions require that the relationship,
or mapping, between the user’s virtual and physical pose remains
constant. A constant mapping will always have the same offset
between the user’s virtual and physical pose. This necessitates
that the mapping cannot be modified by the user’s interactions
with the virtual world (e.g. translating, rotating, interfacing). A
variable mapping, the converse of a constant mapping, allows for
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transformations between the user’s physical and virtual poses; these
transformations stem from user interaction or systemmanipulation.

Most locomotion techniques for navigation in VR require vari-
able mappings, including common strategies such as teleportation
and flying. With these techniques, the user translates and rotates
their virtual pose without altering their physical pose. This in-
troduces a variable offset between the physical and virtual poses.
Conversely, locomotion via walking requires physical movement;
this leads to virtual motion that is traditionally equal in magnitude
and direction to the physical motion. This maintains a constant
mapping between the physical and virtual pose. However, the desire
to employ physical walking has led to the development of locomo-
tion techniques such as redirected walking (RDW) that break this
constant physical-virtual mapping. RDW alters the user’s mapping
on a frame-per-frame basis in a unpredictable way to maximize
the physical space. VR experiences that employ RDW are unable
to leverage interactions with the physical environment, which re-
stricts the kind of immersive experiences available to the user. To
address this deficiency, we draw on the field of robotics and artifi-
cial potential functions to propose a novel method for aligning the
virtual and physical environment using RDW.

At the 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces, three papers were presented that collectively represent
a new computational framework for RDW: the Push/Pull Reactive
(P2R) algorithm [30] and Artificial Potential Field RDW (APF-RDW)
[5, 20]. Although they differ in implementation details, both algo-
rithms employ artificial potential functions, a concept adapted from
the field of robotics [12, 13, 17]. These potential functions are ar-
tificial as they are modeling an abstract potential energy rather
than an actual physical phenomenon. The domain of an artificial
potential function is comprised of the set of all possible system
states. Generally, system states that are considered to be more ideal
have a lower associated energy, while less ideal system states have
a higher associated energy. In this case, the goal of the system is
to be in a state that has the lowest corresponding energy. While
artificial potential functions typically have an attractive component
and a repulsive component, they are modified for RDW to only fea-
ture the repulsive component. The P2R and APF-RDW algorithms
calculate the energy at a location within the physical environment
through the euclidean distance from the point to obstacles and
boundaries. Thus, the minima of the artificial potential function are
the physical environment locations that are the furthest away from
obstacles and boundaries. By calculating the negative gradient of
the potential function at the user’s position, these algorithms can
choose RDW gains to steer the user in the most ideal direction.

This work is an in-depth evaluation of ideas and concepts that
expand upon preliminary results that we presented at a recent
workshop [31]. We investigate the attractive force component of
artificial potential functions to find system configurations that
support interaction with the physical environment, and we define
this process as environmental alignment. To the best of our
knowledge, previous research in computational approaches for
RDW have exclusively focused on avoidance of physical obstacles
[20, 29, 30] or collisions between multiple users [5]. This project
represents a fundamentally new direction that can address one
of the major usability limitations of current VR applications. The
major contributions of this paper include:

• The introduction of alignment, a novel use of RDW that has
the potential to increase usability and interactivity in VR
applications.

• A mathematical framework for implementing environmental
alignment, a class of alignment that addresses a prominent
problem with VR locomotion techniques.

• The extension of an existing RDW algorithm to support
environmental alignment.

• An experiment evaluating the effects of manipulating reac-
tive environmental alignment implementation variables.

• An experiment evaluating the capability of reactive environ-
mental alignment to reverse mapping offsets introduced by
conventional RDW algorithms.

• An empirically validated method for generalizing alignment
in order to optimize its performance in a reactive implemen-
tation.

These contributions lay the foundation for future research intomore
advanced algorithms for alignment, including predictive methods.

2 BACKGROUND AND RELATEDWORKS
Real walking as a locomotion technique provides several benefits
over other techniques including improved navigability [26] and
sense of presence [32]. RDWmaintains the benefits of real walking,
but also introduces subtle manipulations to the user’s movement
to better use the available physical space. It works by slowly and
continuously amplifying or diminishing a component of the user’s
movement in the virtual environment, and is most commonly im-
plemented using a combination of three self-motion illusions [25].
Translation gain techniques measure changes in tracked head posi-
tion and scale the user’s virtual movement in the forward direction,
enabling travel over smaller or greater distances in the virtual world.
Rotation gain techniques measure the change in tracked head orien-
tation and scale the corresponding virtual rotation to reorient the
user towards a target location, usually away from physical obstacles
and boundaries. Curvature gain techniques work by adding small
rotations to the user’s point of view as they translate forward. Users
will subsequently compensate for the offset by walking along a cir-
cular arc in the opposite direction of the added rotations. Human
sensitivity to self-motion illusions can be measured empirically and
RDW is often implemented using the average detection thresholds
calculated by Steinicke et al. [27]. In most cases, the user will in-
evitably enter a collision course with a boundary or obstacle, at
which point the system will introduce a reorientation event, or a
reset [33]. Resets pause the user’s experience and reorient them to
a physical direction that is favorable for the RDW system. These
events are disrupting to the user’s experience, thus it is advanta-
geous to minimize them. For this reason, the number of resets is
often a metric used when evaluating RDW systems.

An extensive volume of literature on RDW has developed over
the last 15 years; a recent community-authored review can be found
in Nilsson et al. [23]. Most research efforts focus on developing and
evaluating RDW algorithms. These algorithms choose which gains
to apply when, and to what degree. Generally, these algorithms
are considered to be either reactive or predictive, with predictive
algorithms being further categorized as static or dynamic.
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2.1 Reactive Algorithms
Reactive algorithms, such as Steer-to-Center (S2C) and Steer-to-
Orbit (S2O) [24], are the simplest RDW algorithms. They have no
knowledge of the user’s intended trajectory and react to the current
system state in order to provide local optimization. Typically, these
algorithms work on a single heuristic. S2C always applies gains
that attempt to steer the user toward the center of the physical envi-
ronment, while S2O steers the user along a predefined orbit around
the center of the physical environment. Hodgson et al. showed that
in most scenarios, S2C outperforms other reactive algorithms [9],
however, they posit that S2O might outperform S2C if the virtual
path is long and consists of very few turns. Azmandian et al. further
compared reactive algorithms in a variety physical environment
sizes and aspect ratios [2]. The results of that work reinforce those
found by Hodgson et al., showing that S2C outperforms the other
reactive algorithms in most practical use cases. However, a new
class of reactive algorithms use artificial potential functions rather
than a heuristic, and they exhibit more complex behaviors. Thomas
et al. and Messinger et al. showed that this class of algorithms per-
forms better than S2C whenever the environment is non-convex or
contains obstacles [20, 30], and Bachmann et al. showed that they
can be used to effectively implement multi-user RDW [5].

2.2 Predictive Algorithms
Predictive algorithms have some knowledge regarding the user’s fu-
ture movements, and can plan for them accordingly. Unlike reactive
algorithms, which optimize the instantaneous state of the system,
predictive algorithms can greatly reduce the number of resets. This
is done by selecting gains that optimizes for a known future trajec-
tory. In his dissertation, Azmandian broke predictive algorithms
into two further categories: static planning and dynamic planning
[1]. This work proposes that the simplest way to obtain knowl-
edge about the user’s future movement is to have the user follow
a pre-defined virtual path. If it is safe to assume that the user will
follow the predefined path without deviation, then static planning
algorithms can be used. Azmandian provided a static planning al-
gorithm called COPPER; in some scenarios with this algorithm, the
user would not encounter a single reset. Static planning algorithms
greatly out-perform all other RDW algorithms when they can be
employed [1]. For situations where static planning algorithms are
not viable, as in free-exploration experiences, dynamic planning
algorithms are the ideal alternative. Dynamic planning algorithms,
such as FORCE [36] and MPCRed [22], work by attempting to pre-
dict the most likely virtual path the user will take and selecting
gains to optimize it. Currently, this class of algorithms is limited
in its application. They only work reliably when the number of
direction options facing a user is fairly low, such as in a maze or a
similar corridor system.

2.3 Physical Interactions
There is an extensive body of research on interacting with physical
objects in VR. One key interaction technique is passive haptics,
where a generic physical object is mapped to a specific virtual ob-
ject [18]. When the user interacts with the virtual object, they also
interact with the physical object. Prior research shows that physi-
cal interaction during a virtual experience can enhance the user’s

sense of presence [6]; furthermore, if the physical object closely
resembles the virtual object, the user’s sense of presence will also
improve [10, 11]. As previously stated, RDW generally eliminates
planned physical interactions in a VR experience. However, with
careful planning and custom implementation of RDW gains, it is
possible to overcome this limitation. Kohli et al. described a method
combining the experience narrative with carefully chosen RDW
gains to bring the user from one virtual pedestal to another, while
physically returning to the same pedestal [14]. The pedestal, which
was cylindrical in shape, was chosen for its rotational invariance;
the user could approach it from any angle and it would still be rota-
tionally aligned with the virtual pedestal. Steinicke et al. created a
scenario where the virtual environment was a larger version of the
physical environment [28]. The environment in both spaces was
square, and consisted of a single cube-shaped obstacle at its cen-
ter Because of this unique symmetry, RDW gains could make the
virtual environment fit within the physical environment, and the
single square obstacle remained aligned to the virtual square object.
Unfortunately, the difficulties posed by realigning a user within
a physical space are exponentially more difficult if the number of
users is more than one. This shortcoming prevents two or more
users from physically interacting with each other, even if they are in
a shared virtual and physical space. Min et al. proposed a multi-step
process to address this problem, where users are instructed to move
in ways that will eventually allow them to physically interact [21].

3 ALIGNMENT OF VIRTUAL AND PHYSICAL
SPACES

We define alignment as the process transforming an arbitrary
mapping to a desired mapping by employing RDW techniques.
Alignment itself does not provide a constant mapping, but rather
attempts to guarantee a specific mapping when certain conditions
within the VR experience are met. The set of conditions explored
in this work result in environmental alignment; this attempts
to guarantee that for some pre-defined region of the virtual envi-
ronment, the user can interact with the physical environment. This
region is defined in reference to the virtual environment, as the
virtual environment drives the user’s experience and decisions.

3.1 Mathematical Foundations
Artificial potential functions are an ideal choice for implementing
alignment through RDW algorithms, as the resulting algorithm can
leverage an attractive force component. The mathematical frame-
work provided for the Push/Pull Reactive algorithm (P2R) that we
presented in an earlier paper [30] includes both an attractive and
repulsive component for the artificial potential function. However,
in the previous work only the repulsive component is used to keep
the user away from boundaries and obstacles. For this work, we de-
fine this strategy as avoidance redirection. To achieve alignment
between the user’s physical and virtual mapping, we extended P2R
and employed the previously unused attractive component.

Eq. 1 shows the potential function used by P2R for a given set
of obstacles, O . This function calculates the associated potential
energy at a point, q, within the physical environment.
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U (q) =
1
2
| |q − qдoal | | +

∑
ob ∈O

1
| |q − qob | |

(1)

Eq. 1 can be broken into two components: an attractive force and
a repulsive force, shown respectively in Eqs. 2 and 3. The repulsive
component will create an artificial force in the direction away from
boundaries and obstacles. The attractive component will create an
artificial force in the direction towards a goal location.

Uattractive (q) =
1
2
| |q − qдoal | | (2)

Ur epulsive (q) =
∑
ob ∈O

1
| |q − qob | |

(3)

For each frame, P2R uses the centered finite difference method to
calculate the negative gradient, −∇U (q), of the potential function at
the user’s position. This negative gradient is then used to determine
the ideal steering direction and compute RDW gains. In this work,
we do not modify how P2R selects RDW gains, and the exact details
can be found in the original literature [30].

3.1.1 Configuration Spaces. The domain of the potential function
presented in Eq. 1 consists of the physical environment’s set of
Cartesian coordinates. This is sufficient when the system is only
steering the user away from physical obstacles, but alignment re-
quires the system to have awareness of both the physical and virtual
environments. To accommodate this, we extended the domain of
the potential function to a more general configuration space.

A configuration space, as used in robotics research, is a higher
dimensional space where each dimension represents one degree
of freedom [19]. All possible configurations of a robot are repre-
sented in the configuration space as a single point, known as the
configuration. Configuration spaces are an advantageous tool when
used for motion planning. Given a starting configuration and a goal
configuration, any multitude of path planning algorithms can sub-
sequently find a viable path through the configuration space. This
path through the configuration space can then be used to manipu-
late the robot’s actuators until it has reached its goal configuration.

For RDW algorithms, configuration spaces can comprehensively
represent the state of the entire system. The user’s physical position
and orientation, and their virtual position and orientation can be
uniquely represented as a single point. Paths through such a config-
uration space can alter the user’s physical position and orientation
at different rates relative to their virtual position and orientation.
This difference can be used to calculate which RDW walking gains
to apply, and the levels required to move the user along the most
optimal path through the configuration space.

3.1.2 Utility Functions. The potential function P2R originally em-
ployed, Eq. 1, assumes that a single goal and a single set of obstacles
are being used. This limits both the number and the richness of po-
tential user interactions. To overcome this, we propose generalizing
Eq. 1 using utility functions. A utility function takes the form:

u(q) = A| |q − qu | |
B (4)

Here, A and B are variables that are selected to define what the
utility function does, and qu is the point in some associated region
of the configuration space that is closest to q. It is possible that the

associated region may only be a single point. The new potential
function is simply the sum of all the utility functions being used.

U (q) =
n∑
i=1

ui (q) (5)

Notably, from the original potential function in Eq. 1, the attrac-
tive component in Eq. 2 and repulsive component in Eq. 3 can both
be rewritten using utility functions. For the attractive component,
let A be 1

2 , B be 1, and qu be qдoal . For the repulsive component,
create a utility function for each obstacle and let A be 1, B be −1,
and qu be qob . In general,A determines the prevalence of the utility
function and B determines if the utility function is attractive (B > 0)
or repulsive (B < 0). In this work we define utility functions to
accomplish both avoidance and alignment redirection, though this
generalization lends itself to other complex RDW based interac-
tions. Exploring more of these interactions further would prove to
be a promising area of future research.

3.2 Alignment Algorithm
A set of alignment conditions and the appropriate utility function
were developed to add alignment capabilities to P2R. The set of
conditions for environmental alignment is straightforward: when
a user’s virtual pose is within a pre-defined region of the virtual
environment, their mapping should be constant and equal to the
offset between the physical and virtual origins. We define such a
mapping as an identity mapping. Transforming from an arbitrary
mapping to an identity mapping can be accomplished by adding an
attractive utility function operating on the configuration space C .

C = {q ∈ R6 | q = {xp ,yp ,θp ,xv ,yv ,θv }} (6)
Here, xp ,yp ,θp represent the a physical position and heading,

and xv ,yv ,θv represent a virtual position and heading. Within this
configuration space, a region Ca is chosen such that it represents
all possible configurations that fulfill our alignment conditions.

It is often useful to talk about parts of this configuration space
separately. In this work we will often refer to the virtual user or
the physical user. This is a convenient way to reference the virtual
pose and physical pose of the user’s configuration, respectively.
Similarly, we refer to the goal configuration as the alignment target,
and the virtual pose and physical pose components as the virtual
alignment target and physical alignment target, respectively.

Ca = {q ∈ C | αx ≤ xv ≤ βx

∧ αy ≤ yv ≤ βy

∧ {xp ,yp ,θp } − {xv ,yv ,θv } = {xo ,yo ,θo }}

(7)

In Equation 7, α and β define a rectangular region within the
virtual environment where an identity mapping is desired. αx and
αy represent the lower boundaries for xv and yv respectively, and
βx and βy represent the upper boundaries for xv and yv respec-
tively. {xo ,yo ,θo } represent the offset between the physical and
virtual origins. If αx = βx and αy = βy , then the alignment region
is a single point. This equation illustrates that if the user is within
the virtual region defined by α and β , and the offset between their
virtual and physical poses is equal to the offset between the virtual
and physical origins, then they are aligned.
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Eq. 8 shows the resulting utility function, where qa is the point
within Ca that is closest to the user’s configuration. As the utility
function needs to be attractive, Ba needs to be greater than 0. We
call this utility function the alignment utility function. This function
is used in both Experiments 1 and 2. A value of 2 was selected for
Ba following informal evaluations, but future research is necessary
to determine the exact effect of Ba .

ua (q) = Aa | |q − qa | |
Ba (8)

Eq. 9 shows the avoidance utility function that steers the user
to avoid boundaries and obstacles. qo is the configuration closest
to the obstacle region Co , where Co contains every configuration
resulting in a boundary or obstacle collision. Ao was chosen to be
1 and Bo was chosen to be −1, consistent with the literature [30].

uo (q) = Ao | |q − qo | |
Bo (9)

4 EXPERIMENTS
4.1 Simulation Framework
The experiments reported in this paper were conducted using sim-
ulation. A large number of trials testing numerous possible param-
eters is necessary to comprehensively evaluate the performance
of RDW algorithms. This can make live user studies prohibitive
and impractical. Consequently, simulation-based evaluation is a
common and valid practice in RDW research (e.g. [2, 3, 9, 30, 36]).

The simulations were run on a Dell PowerEdge R815 with 4x
AMD Opteron 6220 processor and 192GB of RAM. All simulations
were run with a fixed frame rate of 90 fps. Each permutation con-
sisted of 100 trials, and at the start of a trial the simulated user
would turn to face the first waypoint, then walk directly towards
it. Upon reaching a waypoint the simulated user would stop, turn
to face the next waypoint, and again walk directly towards it. This
continued until the simulated user reached the final waypoint. The
simulated user turned at a constant rate of π

2 radians per second
and translated at a constant speed of 1 meter per second. The phys-
ical component of the simulated user would be redirected using the
modified P2R algorithm. The simulation parameters were chosen
to be the same as previous simulation based RDW studies [2, 30].

Translation and rotation gains were limited to the detection
thresholds determined by Steinicke et al. [27]. The maximum cur-
vature was set to a radius of 7.5m, which is a commonly employed
threshold value [2, 9]. The simulated physical environment con-
sisted of a 10m x 10m square environment with no obstacles. A
reset was triggered upon intersection with one of the boundaries
and the simulated user’s virtual representation would complete a
full rotation while their physical representation would rotate to
face the center of the physical environment.

Most RDW algorithms dynamically modify the gain values on
a frame-per-frame basis. In a recently published perceptual study,
Cogdon et al. explored human sensitivity to the rate of change
of rotation gains and suggested that slow changes are harder to
detect than sudden ones [7]. However, there is still a lack of under-
standing for how gain rate change should be modulated by a RDW
system, and how specific implementations of gain smoothing may
interact with other algorithm parameters. Therefore, the simula-
tions in this paper did not apply temporal smoothing to rotation,

translation, or curvature gains. The experiments compared relative
performance of different alignment strategies under a consistent
set of conditions, and therefore provide generally applicable insight
into advantages and disadvantages of these methods. However, we
do plan to investigate modulation of dynamic gain changes in the
context of redirection and alignment in future work.

4.2 Experiment 1
By definition, reactive algorithms do not make any attempt to pre-
dict users’ future movements. The proposed approach therefore
assumes that the system is continuously seeking an aligned state,
and therefore applies avoidance and alignment redirection simulta-
neously. The combination of avoidance and alignment redirection
have not been previously investigated, and therefore the interac-
tions between the variable parameters described in Section 3 are
not well understood. This limits our ability to optimize the align-
ment process and understand the effects of reversing a mapping.
To address these gaps in knowledge, Experiment 1 describes an
investigation into two of the variables in the alignment algorithm:
the weight parameter Aa and the prioritization of the components
of the negative gradient. These specific parameters were selected
because we expected them to have a particularly strong influence
on the interaction between avoidance and alignment redirection.

The experiment used a 2x2 design to examine the impacts of
these parameters. For each trial, the simulated user would start at
the center of the physical environment with their heading parallel
to the positive y-axis. They would then navigate a virtual path of 20
waypoints (this number was chosen as to give enough distance for
the effects of RDW to take place given the physical environment
size). Each waypoint was generated at a random distance from the
previous waypoint using a uniform distribution between 2 and 6
meters. Likewise, the rotation of a new waypoint was generated
at a random from the rotation of previous waypoint, using a uni-
form distribution between −π and π radians [2, 30]. The virtual
alignment target was located at the final waypoint, oriented in the
direction that the simulated user would be facing when walking
from the penultimate waypoint. Each permutation used the same
ordered set of 100 virtual paths and alignment targets [30].

The utility function shown in Eq. 8 has a weight parameter, Aa ,
and this parameter increases or decreases the amount of influence
the alignment utility function has over other utility functions. The
first independent variable was this weight parameter, with two
possible conditions: static weighting (SW), or dynamic weighting
(DW). DW uses an Aa value of 1

dv
, where dv is the distance be-

tween the virtual alignment target and the virtual user, and SW
uses an Aa value of 1. Both avoidance redirection and alignment
redirection were applied at the same time. Therefore, the alignment
weight parameter will determine how the alignment utility function
interacts with the avoidance utility function.

The second independent variable is the prioritization of the neg-
ative gradient’s positional components versus its rotational compo-
nents. Two conditions were considered: position priority (PP) and
orientation priority (OP). Aligning a user’s mapping requires the
user to reach a specific position and orientation, both physically
and virtually. An initial solution is to use a potential function to
attract the user to the goal position and orientation simultaneously.
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Ep =
√
(xp−user − xp−дoal )

2 + (yp−user − yp−дoal )
2 + (xv−user − xv−дoal )

2 + (yv−user − yv−дoal )
2 (10)

However, cases can arise where the system may seek to alter the
user’s location in such a way that repositioning requires a rota-
tion in one direction, while reorienting requires a rotation in the
opposite direction. As the user cannot rotate in both directions
simultaneously, the system must choose to prioritize the positional
steering component, or the rotational steering component.

Experiment 1 measured two dependent variables: the number of
resets, and the positional alignment error (Ep ). The number of resets
provides insight into the effectiveness of the avoidance redirection
component as independent variables are changed. The positional
alignment error provides insight into the effectiveness of the align-
ment redirection component. This error, shown in Eq. 10, is defined
as the Euclidean distance between the positional components of the
user’s final configuration and the alignment target. For simplicity,
only positional alignment error was considered. This is justified by
the fact that once the user is positionally aligned, a simple reset
can align their orientation with the desired configuration.

For Experiment 1, we made the following hypotheses:

• H1: DW conditions will have a fewer number of resets com-
pared to the SW conditions. Dynamicallyweighting the align-
ment utility function will allow the avoidance redirection
component to have a greater effect for a greater amount time,
which should result in fewer resets.

• H2: DW conditions will have greater positional alignment
error. Dynamically weighting the alignment utility function
will reduce the effect and length of the alignment redirection
component, resulting in greater positional alignment error.

• H3: OP conditions will have greater positional alignment
error compared to PP conditions. This follows from the fact
that giving position priority over orientation should result
in less positional error.

4.2.1 Results. A Kolmogorov-Smirnov test for normality was con-
ducted for both dependent variables and they were not found to be
normally distributed. Because of this, results for Experiment 1 were
analyzed using non-parametric techniques and the reported values
are medians (Mdn) and inter-quartile ranges (IQR). Results for Ex-
periment 1 were analyzed using a Kruskal-Wallis H-test and the
Mann-Whitney U test was used for post-hoc multiple comparison
tests. A significance value α = 0.05 was used for all tests. P-values
reported for post-hoc multiple comparison tests were adjusted us-
ing the Bonferonni method.

Analysis of the number of resets found a significant difference
H (5) = 227.13, p < 0.001, η2 = 0.374. Post-hoc analysis found
significantly fewer resets were encountered with the DW-PP per-
mutation (Mdn = 5, IQR = 2) than the DW-OP permutation
(Mdn = 9, IQR = 2, U = 356.0, p < 0.001), the SW-PP permu-
tation (Mdn = 6, IQR = 3,U = 3115.0, p < 0.001), and the SW-OP
permutation (Mdn = 9, IQR = 3, U = 332.0, p < 0.001). Signifi-
cantly fewer resets were also encountered with the SW-PP permu-
tation (Mdn = 6, IQR = 3) than the SW-OP permutation (Mdn = 9,
IQR = 3, U = 1190.0, p < 0.001) and the DW-OP permutation
(Mdn = 9, IQR = 2,U = 1274.5, p < 0.001).

Analysis of the positional alignment error found a significant
difference H (5) = 24.26, p < 0.001, η2 = 0.032. Post-hoc analysis
found significantly less error was encountered with the SW-PP
permutation (Mdn = 3.01, IQR = 3.09) than the SW-OP permu-
tation (Mdn = 4.87, IQR = 3.96, U = 3370.0, p < 0.001), and
the DW-OP permutation (Mdn = 4.64, IQR = 3.65, U = 3296.0,
p < 0.001). Significantly less error was also encountered with the
DW-PP condition (Mdn = 3.94, IQR = 2.74) than the DW-OP
condition (Mdn = 4.64, IQR = 3.65,U = 4009.0, p = 0.047).

4.2.2 Discussion. Consistent with H3, Experiment 1 showed that
orientation priority performed worse than position priority for
both the number of resets and positional alignment error. Addition-
ally, under position priority, H1 and H2 were shown to be correct.
Dynamically weighting Aa resulted in fewer resets, but greater
positional alignment error. Finally, position priority resulted in sig-
nificantly lower positional alignment error, confirming H3, but it
also resulted in significantly fewer resets, which we did not predict.

In general, our results indicate that alignment using artificial
potential functions can reduce the discrepancy of a position be-
tween virtual and physical space. However, it is important to note
that Experiment 1 was set up to evaluate the relative performance
differences between variations in the implementation of alignment.
As such, the simulations were not constructed with the intention of
reducing the positional alignment error to zero. Because the algo-
rithm was purely reactive and the waypoints and alignment targets
were generated randomly, it is unreasonable to expect positional
alignment error to disappear. However, in prior research, predictive
approaches [22, 36] or custom-built narrative scenarios [35] can
significantly improve the effectiveness of RDW algorithms. These
results can inform the implementation of alignment within RDW
systems that are more sophisticated and complex. This points to the
need for further research that can build upon this initial exploration
of reactive alignment in a variety of contexts.

4.3 Experiment 2
In Experiment 1, alignment redirection and avoidance redirec-
tion were applied simultaneously. As expected, purely reactive
approaches leave much room for improvement because they are
naive to the user’s goals. However, if we relax the restrictions of
reactive RDW by providing the system with some knowledge of
when alignment is necessary, it would be possible to switch between
avoidance and alignment redirection as needed. This capability in-
troduces several interesting use cases. For instance, an experience
could begin with a long virtual path that ends at a virtual roomwith
several objects that have physical haptic proxies. Locomotion along
the long virtual path would best be implemented with avoidance
redirection techniques. However, by the time the user arrives at
the room with physical interactions, their mapping would be dis-
rupted. We could then apply alignment-only redirection in order to
essentially reverse the mapping discrepancies introduced by RDW
and return the system to an aligned state. Experiment 2, therefore,
explored the notion of reversing avoidance redirection.
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Figure 2: Experiment 1 number of resets (left) and positional alignment error, Ep (right). The bar represents the median value,
the box represents the IQR, and the whiskers represent the data spread not including outliers

Using a 4x2 experimental design, a simulated user walked d vir-
tual meters in a random direction, turned around, and walked back
to their starting location. The simulated user’s starting physical
location was randomly chosen within the physical environment
(with a 1m buffer from the boundaries) using a uniform distribution.
The alignment utility function was defined such that the simulated
user’s starting configuration was the singular alignment target con-
figuration. Specifically, the simulated user started in an aligned
state, and the goal was for the user to return to the same physical
and virtual locations at the end of the trial. To help describe the
experimental design, we define the point where the virtual user
turned around as the inflection waypoint. Informed by the results
from Experiment 1, position priority was used, and as avoidance
redirection and alignment redirection were not being applied at the
same time, the weighting had no effect.

The first independent variable considered was the application of
alignment after the inflection waypoint. There were two conditions:
alignment, or no alignment. In both conditions, only avoidance
redirection was applied until the virtual user reached the inflection
waypoint. In the alignment condition, the system would switch to
only applying alignment redirection upon the virtual user reaching
the inflection waypoint. In the no alignment condition, the system
would continue to only apply avoidance redirection.

The second independent variable was the virtual distance d be-
tween the simulated user and the inflection waypoint. Four possible
conditions were considered: 5m, 10m, 20m, and 30m. This condition
explores the impact navigated distance has on alignment effective-
ness during the application of alignment redirection.

As in Experiment 1, Experiment 2 considered two dependent
variables: the number of resets and the positional alignment error
(Ep ). Our hypotheses for Experiment 2 were as follows:

• H1: Conditions with alignment will result in lower positional
mapping error than conditions with no alignment. Theoreti-
cally, trials with the no-alignment conditions should finish
with the simulated user’s physical position pseudo-randomly
distributed around the physical environment. In trials with
alignment, the simulated user is being redirected toward the
goal configuration, and theoretically should end closer to
the goal configuration.

• H2: Conditions with a longer virtual path will result in lower
positional mapping error than conditions with a shorter
virtual path. This is based on the supposition that the larger
the distance the user has to translate over, the more time the
system has to move the user into an aligned state.

• H3: Conditions with alignment will result in a higher num-
ber of resets, as the mode of redirection changes from avoid-
ing boundaries to pursuing a goal position.

4.3.1 Results. A Kolmogorov-Smirnov test for normality was con-
ducted for both dependent variables; they were not found to be
normally distributed. Therefore, results for Experiment 2 were an-
alyzed using non-parametric techniques. The reported values are
medians (Mdn) and interquartile ranges (IQR). Inflection point dis-
tance was not analyzed as a confounding factor. The four conditions
were analyzed separately. The Mann-Whitney U test was used for
pair-wise testing and a significance value α = 0.05 was used.

For the 5m inflection waypoint distance, no significant difference
was found regarding final positional mapping error between the
alignment condition (Mdn = 1.44, IQR = 0.71) and the no align-
ment condition (Mdn = 1.65, IQR = 1.25). A significant difference
was found regarding the number of resets between the alignment
condition (Mdn = 0, IQR = 2) and the no alignment condition
(Mdn = 0, IQR = 1)U = 4247, p = 0.015.

For the 10m inflection waypoint distance, a significant difference
was found regarding final positional mapping error between the
alignment condition (Mdn = 0.23, IQR = 1.27) and the no align-
ment condition (Mdn = 2.58, IQR = 2.60)U = 1469, p < 0.001. No
significant difference was found regarding the number of resets
between the alignment condition (Mdn = 2, IQR = 2) and the no
alignment condition (Mdn = 2, IQR = 2).

For the 20m inflection waypoint distance, a significant difference
was found regarding final positional mapping error between the
alignment condition (Mdn = 1.67, IQR = 2.15) and the no align-
ment condition (Mdn = 2.66, IQR = 2.10)U = 3185, p < 0.001. No
significant difference was found regarding the number of resets
between the alignment condition (Mdn = 3, IQR = 1) and the no
alignment condition (Mdn = 2, IQR = 2).

For the 30m inflection waypoint distance, no significant differ-
ence was found regarding final positional mapping error between
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Figure 3: Experiment 2 positional alignment error, Ep , for the alignment condition (top left) and the no alignment condition
(top right). The bar represents the median value, the box represents the IQR, and the whiskers represent the data spread not
including outliers

the alignment condition (Mdn = 3.03, IQR = 3.06) and the no align-
ment condition (Mdn = 2.61, IQR = 2.42). A significant difference
was found regarding the number of resets between the alignment
condition (Mdn = 5, IQR = 1) and the no alignment condition
(Mdn = 4, IQR = 0)U = 2828, p < 0.001.

4.3.2 Discussion. For Experiment 2, in terms of final positional
mapping error, the alignment condition performed significantly
better than the no alignment condition for the 10m and 20m in-
flection waypoint distances. However, no significant results were
found for the 5m and 30m inflection waypoint distances.

Regarding the number of resets, the alignment condition per-
formed significantly worse than the no alignment condition for the
5m and 30m inflection waypoint distances, but no significant results
were found for the 10m and 20m inflection waypoint distances. This
suggests there is an upper and lower inflection waypoint distance
threshold during which alignment-only redirection not only ceases
to be beneficial, but can actually be harmful. These results were
consistent with our hypotheses regarding inflection waypoint dis-
tances of 10m and 20m, but were inconsistent with our hypotheses
regarding inflection waypoint distances of 5m and 30m.

4.4 Generalizing Alignment
The initial results of Experiment 2 could suggest the existence of
some virtual distance between the user and the alignment target
where it is ideal to start applying alignment. However, the effects
could also be the result of more complex interactions between mul-
tiple parameters. While the virtual distance between the inflection
waypoint and the alignment target had a significant effect on the
number of resets and the positional mapping error, it is also pos-
sible that these results were influenced by the physical distance
and physical rotational offset between the initial and the desired
configuration. As an extension of Experiment 2, we sought a more
comprehensive explanation for the observed behavior. Based on
prior observations, we chose to examine virtual distance, physical
distance, and physical rotational offset to explore the relationship
between the user’s configuration when alignment-only redirection

starts and the alignment target. We targeted these variables as the
most likely factors influencing the outcome of the system.

4.4.1 Mathematical Foundations. Using virtual distance, physical
distance, and physical rotational offset, we derived a set of mathe-
matical requirements for the relationship between the user’s config-
uration and the alignment target configuration. These requirements
can be seen in Eq. 11 and Eq. 12, which correspond to translation
gain and curvature gain, respectively. Both equations assume that
the virtual user is facing and walking towards the virtual alignment
target. Successful environmental alignment occurs when these re-
quirements are satisfied and alignment-only redirection is applied.

GtDp < Dv < дtDp (11)

Eq. 11 states that Dv (the virtual distance from the user to the
alignment target) needs to be larger than Dp (the physical dis-
tance from the user to the alignment target) multiplied by Gt (the
maximum translation gain) and less than Dp multiplied by дt (the
minimum translation gain). When this requirement is met, there
exists a translation gain between the perceptual thresholds that,
when applied, will result in the virtual user and the physical user
arriving at the respective alignment targets at the same time.

ϕp < sin−1(
Dpκmax

2
) (12)

Eq. 12 sets the required relationship between ϕp (the physical
rotational offset ), Dp , and κmax (the maximum curvature). When
this requirement is met, the physical user will be facing a direc-
tion such that the application of curvature gain will result in the
user moving straight towards the physical alignment target. This
will necessarily occur before the virtual representation of the user
arrives at the virtual alignment target.

4.4.2 Validation. A simulation-based evaluation was used to vali-
date the mathematical relationships described in the previous sec-
tion. For each trial, the starting and alignment target configurations
were chosen at random such that the virtual user was facing the
virtual alignment target, and that their relationship satisfied Eqs.
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11 and 12. The simulation conditions were the same as in Exper-
iment 2, except that the user would immediately progress to the
virtual alignment target and alignment-only redirection would be
applied. 1000 such trials were conducted with the following final
positional errors (presented as quartiles): Q1 = 0.09m, Q2 = 0.10m,
Q3 = 0.12m. The low alignment error, combined with the nar-
row inter-quartile range (IQR), provides empirical support for the
proposed equations.

4.4.3 Alignment Regions. Applying avoidance and alignment redi-
rection simultaneously to achieve environmental alignment in a
purely reactive manner may be inefficient as suggested by the first
experiment. However, the second experiment shows that if the sys-
tem has knowledge of the user’s alignment requirements, or can
identify when the user needs to align to the physical environment,
it can switch from avoidance redirection to alignment redirection.
Our results suggest that this is a much more effective strategy. Fur-
thermore, constructing regions in the configuration space such that
they satisfy the requirements of Eq. 11 and Eq. 12 can reduce the
alignment error for a given goal configuration. When the system
identifies that the user is within one of these regions, it can switch
to alignment-only redirection to achieve the desired configuration.
Additionally, these regions can be used to create virtual waypoints
such that once the user reaches that waypoint, their configuration
would be located in one of these regions. In summary, we believe
that further development and validation of region-based alignment
is a promising area for future work.

5 FUTUREWORK
This work presented themathematical foundations and initial exper-
iments that point towards the value of future research, development,
and evaluation of novel alignment methodologies. To this end, we
have identified several research vectors to inform future work.

In unconstrained scenarios, we do not expect reactive RDW
algorithms to consistently steer the user away from boundaries
and obstacles; this is why resets are also employed. When there is
positional error remaining after alignment should have completed, a
similar “alignment reset” could be applied. For example, rather than
pausing an experience to rotate the user towards a more favorable
orientation, an alternative intervention would be a positional reset,
where the user translates to a particular location. Gretchkin et al.
implemented a similar concept, called “Rotate andWalk,” to achieve
contextually relevant resets [8]. Continuous alignment along with
positional resets may collectively represent a more generalizable
solution, and future work that investigates multiple synergistic
techniques would be valuable.

Current RDW techniques cannot steer the user in a specific
direction without simultaneously manipulating their rotation. For
example, with rotation and curvature gains, there is no way to move
users left or right while maintaining a forward-facing orientation.
This may impact future avenues for alignment research; particularly
those that may try to manipulate the position and rotation of the
user independently. You et al. recently introduced a new RDW
technique, strafing gain, that has the user strafe to either their left
or right as they walk forward [34]. This technique has promise for
alignment, as well as traditional RDW, but has yet to be perceptually
validated. In general, new redirection techniques that allow formore

flexible manipulations of the user’s mapping would increase the
effectiveness of alignment algorithms.

In practice, it may be difficult to remove alignment error entirely.
However, previous research in redirected touching has shown that
visual cues will also dominate proprioceptive and haptic feedback
[15, 16]. A positional error of approximately 10cm, as shown in
some of our experiments, is quite small given the overall scale of the
physical environment, and would allow coarse physical interaction
with large objects. However, errors of this magnitude may interfere
with fine-grained interactions with small or highly detailed physical
objects. Potential future work could examine techniques such as
haptic retargeting [4] to compensate for alignment error.

The work presented in this paper demonstrates how alignment
algorithms can be combined with avoidance algorithms to alter a
user’smapping and converge on a specific point. This has significant
potential for expanding interaction with the physical environment.
However, there are additional locomotion techniques not addressed
in this work that do not maintain a constant virtual to physical
mapping. For example, multiple applications now combine physical
locomotion with virtual locomotion techniques (e.g., controller-
based steering, teleportation) to expand the space the user can
explore. This is commonly seen in “building-scale” VR, which has
emerged as a new experiential avenue following the proliferation of
room-scale experiences and HMDs with inside-out tracking. When
these application employ physical locomotion, it creates an open-
ing for physical interactions that can enhance the user’s sense of
presence. However, the use of virtual locomotion techniques will
immediately break the mapping between the physical and virtual
environment, rendering physical interactions impossible. New loco-
motion techniques and interfaces could aim to combine continuous
alignment during physical movement with subtle positional resets
in the virtual environment. These types of advances promise to
enhance user experiences by allowing developers to leverage the
physical world to a greater degree than is currently possible.

6 CONCLUSION
While RDW provides a tool for navigating virtual environments
that exceed the confines of a physical space, its usability has been
limited by two major shortcomings: an inability to avoid physical
obstacles, and the loss of physical interaction as a consequence
of dynamic mapping. The original algorithm and the concept of
alignment discussed in this paper provide a solution to both of
these problems, particularly relating to environmental alignment.

Our experiments illustrate that the reactive algorithm can use re-
pulsive mechanisms to steer the user away from physical obstacles
and attractive techniques to align the user with a given target. The
system can reduce the positional discrepancy between the virtual
and physical space while minimizing the number of resets that the
user experiences. Furthermore, if it has knowledge of when the
user needs to align, efficiency can be improved by transitioning
between avoidance and alignment redirection. The capability to
reverse a dynamic mapping opens up significant new possibilities
for virtual environments to employ both natural locomotion and
physical interaction techniques, and incorporating both virtual and
physical elements in large-scale environments will offer a way to
create more complex and sophisticated experiences for users.



VRST ’20, November 1–4, 2020, Virtual Event, Canada Thomas, Jerald et al.

REFERENCES
[1] Mahdi Azmandian. 2018. Design and Evaluation of Adaptive Redirected Walking

Systems. Ph.D. Dissertation. University of Southern California.
[2] Mahdi Azmandian, Timofey Grechkin, Mark T Bolas, and Evan A Suma. 2015.

Physical Space Requirements for Redirected Walking: How Size and Shape Affect
Performance.. In ICAT-EGVE. 93–100.

[3] Mahdi Azmandian, Tim Grechkin, and Evan Suma Rosenberg. 2017. An Evalua-
tion of Strategies for Two User Redirected Walking in Shared Physical Spaces. In
IEEE Conference on Virtual Reality and 3D User Interaction. IEEE.

[4] Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D
Wilson. 2016. Haptic retargeting: Dynamic repurposing of passive haptics for
enhanced virtual reality experiences. In ACM CHI Conference on Human Factors
in Computing Systems. ACM, 1968–1979.

[5] Eric R Bachmann, Eric Hodgson, Cole Hoffbauer, and Justin Messinger. 2019.
Multi-User Redirected Walking and Resetting Using Artificial Potential Fields.
IEEE Transactions on Visualization and Computer Graphics 25, 5 (2019), 2022–2031.

[6] Lung-Pan Cheng, Thijs Roumen, Hannes Rantzsch, Sven Köhler, Patrick Schmidt,
Robert Kovacs, Johannes Jasper, Jonas Kemper, and Patrick Baudisch. 2015.
Turkdeck: Physical virtual reality based on people. In ACM Symposium on User
Interface Software & Technology. ACM, 417–426.

[7] Ben J Congdon and Anthony Steed. 2019. Sensitivity to Rate of Change in Gains
Applied by Redirected Walking. In ACM Symposium on Virtual Reality Software
and Technology. ACM, 3.

[8] Timofey Grechkin, Mahdi Azmandian, Mark Bolas, and Evan Suma. 2015. To-
wards context-sensitive reorientation for real walking in virtual reality. In IEEE
Conference on Virtual Reality. IEEE, 185–186.

[9] Eric Hodgson and Eric Bachmann. 2013. Comparing four approaches to gener-
alized redirected walking: Simulation and live user data. IEEE Transactions on
Visualization and Computer Graphics 19, 4 (2013), 634–643.

[10] Hunter G Hoffman. 1998. Physically touching virtual objects using tactile aug-
mentation enhances the realism of virtual environments. In IEEE Virtual Reality.
IEEE, 59–63.

[11] Brent Edward Insko, M Meehan, M Whitton, and F Brooks. 2001. Passive haptics
significantly enhances virtual environments. Ph.D. Dissertation. University of
North Carolina at Chapel Hill.

[12] Oussama Khatib. 1986. The potential field approach and operational space
formulation in robot control. In Adaptive and Learning Systems. Springer, 367–
377.

[13] Oussama Khatib. 1986. Real-time obstacle avoidance for manipulators and mobile
robots. In Autonomous robot vehicles. Springer, 396–404.

[14] Luv Kohli, Eric Burns, Dorian Miller, and Henry Fuchs. 2005. Combining passive
haptics with redirected walking. In Proceedings of the 2005 international conference
on Augmented tele-existence. ACM, 253–254.

[15] Luv Kohli, Mary C Whitton, and Frederick P Brooks. 2012. Redirected Touching:
The effect of warping space on task performance. In IEEE Symposium on 3D User
Interfaces. IEEE, 105–112.

[16] Luv Kohli, Mary C Whitton, and Frederick P Brooks. 2013. Redirected Touching:
Training and adaptation in warped virtual spaces. In IEEE Symposium on 3D User
Interfaces. IEEE, 79–86.

[17] Bruce H Krogh and Timothy J Graettinger. 1985. Maneuverability constraints for
supervisory steering control. In IEEE Conference on Decision and Control. IEEE,
279–284.

[18] R W Lindeman, J L Sibert, and Hahn J K. 1999. Hand-held windows: towards
effective 2D interaction in immersive virtual environments. In IEEE Conference
on Virtual Reality. 205–212.

[19] Tomas Lozano-Perez. 1990. Spatial planning: A configuration space approach. In
Autonomous robot vehicles. Springer, 259–271.

[20] Justin Messinger, Eric Hodgson, and Eric R Bachmann. 2019. Effects of Tracking
Area Shape and Size on Artificial Potential Field Redirected Walking. In IEEE
Conference on Virtual Reality and 3D User Interfaces.

[21] Dae-Hong Min, Dong-Yong Lee, Yong-Hun Cho, and In-Kwon Lee. 2020. Shaking
Hands in Virtual Space: Recovery in Redirected Walking for Direct Interaction
between Two Users. In 2020 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR). IEEE, 164–173.

[22] Thomas Nescher, Ying-Yin Huang, and Andreas Kunz. 2014. Planning redirection
techniques for optimal free walking experience using model predictive control.
In IEEE Symposium on 3D User Interfaces. IEEE, 111–118.

[23] Niels Christian Nilsson, Tabitha Peck, Gerd Bruder, Eri Hodgson, Stefania Serafin,
Mary Whitton, Frank Steinicke, and Evan Suma Rosenberg. 2018. 15 Years
of Research on Redirected Walking in Immersive Virtual Environments. IEEE
Computer Graphics and Applications 38, 2 (2018), 44–56.

[24] Sharif Razzaque. 2005. Redirected walking. University of North Carolina at Chapel
Hill.

[25] Sharif Razzaque, Zachariah Kohn, and Mary CWhitton. 2001. Redirected walking.
In EUROGRAPHICS, Vol. 9. Citeseer, 105–106.

[26] Roy A Ruddle. 2013. The effect of translational and rotational body-based in-
formation on navigation. In Human walking in virtual environments. Springer,
99–112.

[27] Frank Steinicke, Gerd Bruder, Jason Jerald, Harald Frenz, and Markus Lappe.
2010. Estimation of detection thresholds for redirected walking techniques. IEEE
Transactions on Visualization and Computer Graphics 16, 1 (2010), 17–27.

[28] Frank Steinicke, Gerd Bruder, Timo Ropinski, and Klaus Hinrichs. 2008. Moving
towards generally applicable redirected walking. In Proceedings of the Virtual
Reality International Conference (VRIC). IEEE Press, 15–24.

[29] Qi Sun, Anjul Patney, Li-Yi Wei, Omer Shapira, Jingwan Lu, Paul Asente, Suwen
Zhu, Morgan McGuire, David Luebke, and Arie Kaufman. 2018. Towards virtual
reality infinite walking: dynamic saccadic redirection. ACM Transactions on
Graphics 37, 4 (2018), 67.

[30] J. Thomas and E. Suma Rosenberg. 2019. A General Reactive Algorithm for
Redirected Walking using Artificial Potential Functions. In IEEE Conference on
Virtual Reality and 3D User Interfaces.

[31] J. Thomas and E. Suma Rosenberg. 2020. Reactive Alignment of Virtual and
Physical Environments Using Redirected Walking. In 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). IEEE,
317–323.

[32] Martin Usoh, Kevin Arthur, Mary C Whitton, Rui Bastos, Anthony Steed, Mel
Slater, and Frederick P Brooks Jr. 1999. Walking> walking-in-place> flying, in
virtual environments. InACMSIGGRAPH. ACMPress/Addison-Wesley Publishing
Co., 359–364.

[33] Betsy Williams, Gayathri Narasimham, Bjoern Rump, Timothy P McNamara,
Thomas H Carr, John Rieser, and Bobby Bodenheimer. 2007. Exploring large
virtual environments with an HMD when physical space is limited. In ACM
Symposium on Applied Perception. 41–48.

[34] Christopher You, Evan Suma Rosenberg, and Jerald Thomas. 2019. Strafing Gain:
A Novel Redirected Walking Technique. In ACM Symposium on Spatial User
Interaction. ACM, 26.

[35] Run Yu, Zachary Duer, Todd Ogle, Doug A Bowman, Thomas Tucker, David Hicks,
Dongsoo Choi, Zach Bush, Huy Ngo, Phat Nguyen, et al. 2018. Experiencing an
Invisible World War I Battlefield Through Narrative-Driven Redirected Walking
in Virtual Reality. In IEEE Conference on Virtual Reality and 3D User Interfaces.
IEEE, 313–319.

[36] Michael A Zmuda, Joshua L Wonser, Eric R Bachmann, and Eric Hodgson.
2013. Optimizing constrained-environment redirected walking instructions using
search techniques. IEEE Transactions on Visualization and Computer Graphics 19,
11 (2013), 1872–1884.


	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Reactive Algorithms
	2.2 Predictive Algorithms
	2.3 Physical Interactions

	3 Alignment of Virtual and Physical Spaces
	3.1 Mathematical Foundations
	3.2 Alignment Algorithm

	4 Experiments
	4.1 Simulation Framework
	4.2 Experiment 1
	4.3 Experiment 2
	4.4 Generalizing Alignment

	5 Future Work
	6 Conclusion
	References

